
The Samhain Host Integrity
Monitoring System



The Samhain Host Integrity Monitoring System
Copyright © 2002-2010 Rainer Wichmann

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

You may obtain a copy of the GNU Free Documentation License from the Free Software Foundation by visiting their Web site

(http://www.fsf.org) or by writing to: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.



Table of Contents
1. Introduction..................................................................................................................................... 1
2. Compiling and installing ................................................................................................................ 2

2.1. Overview .............................................................................................................................. 2
2.2. Requirements ....................................................................................................................... 3
2.3. Download and extract........................................................................................................... 4
2.4. Configuring the source ......................................................................................................... 5
2.5. Build..................................................................................................................................... 7
2.6. Install.................................................................................................................................... 7
2.7. Customize............................................................................................................................. 8
2.8. Initialize the baseline database............................................................................................. 9
2.9. Run samhain......................................................................................................................... 9
2.10. Files and directory layout................................................................................................. 10
2.11. The testsuite ..................................................................................................................... 13

3. General usage notes ...................................................................................................................... 15
3.1. How to invoke .................................................................................................................... 15
3.2. Using daemontool (or similar utilities) .............................................................................. 15
3.3. Controlling the daemon...................................................................................................... 15
3.4. Signals ................................................................................................................................ 16
3.5. PID file ............................................................................................................................... 17
3.6. Log file rotation.................................................................................................................. 17
3.7. Updating the file signature database .................................................................................. 18
3.8. Improving the signal-to-noise ratio.................................................................................... 19
3.9. Runtime options: command-line & configuration file ....................................................... 19
3.10. Remarks on the dnmalloc allocator.................................................................................. 19
3.11. Support / Bugs / Problems ............................................................................................... 21

4. Configuration of logging facilities ............................................................................................... 22
4.1. General ............................................................................................................................... 22
4.2. Available logging facilities................................................................................................. 24
4.3. Activating logging facilities and filtering messages........................................................... 25
4.4. E-mail................................................................................................................................. 27
4.5. Log file ............................................................................................................................... 32
4.6. Log server........................................................................................................................... 34
4.7. External facilities ............................................................................................................... 35
4.8. Console............................................................................................................................... 35
4.9. Prelude ............................................................................................................................... 36
4.10. Using samhain with nagios .............................................................................................. 40
4.11. Syslog............................................................................................................................... 41
4.12. SQL Database .................................................................................................................. 41

5. Configuring samhain, the host integrity monitor ...................................................................... 46
5.1. Usage overview .................................................................................................................. 46
5.2. Available checksum functions............................................................................................ 47
5.3. File signatures .................................................................................................................... 47
5.4. Defining file check policies: what, and how, to monitor.................................................... 48
5.5. Excluding files and/or subdirectories (All except . . . ) ....................................................... 61
5.6. Timing file checks .............................................................................................................. 62

iii



5.7. Initializing, updating, or checking ..................................................................................... 63
5.8. The file signature database ................................................................................................. 64
5.9. Checking the file system for SUID/SGID binaries ............................................................ 64
5.10. Detecting Kernel rootkits ................................................................................................. 67
5.11. Monitoring login/logout events........................................................................................ 71
5.12. Checking mounted filesystem policies............................................................................. 73
5.13. Checking sensitive files owned by users .......................................................................... 73
5.14. Checking for hidden/fake/missing processes ................................................................... 74
5.15. Checking for open ports ................................................................................................... 76
5.16. Logfile monitoring/analysis ............................................................................................. 78
5.17. Checking the Windows registry ....................................................................................... 85
5.18. Modules............................................................................................................................ 87
5.19. Performance tuning .......................................................................................................... 88
5.20. Storing the full content of a file (aka: WHAT has changed?) .......................................... 89

6. Configuring yule, the log server .................................................................................................. 92
6.1. General ............................................................................................................................... 92
6.2. Important installation notes................................................................................................ 93
6.3. Registering a client............................................................................................................. 94
6.4. Enabling logging to the server ........................................................................................... 95
6.5. Enabling baseline database / configuration file download from the server........................ 96
6.6. Rules for logging of client messages ................................................................................. 98
6.7. Detecting ’dead’ clients...................................................................................................... 98
6.8. The HTML server status page............................................................................................ 99
6.9. Chroot............................................................................................................................... 100
6.10. Restrict access with libwrap (tcp wrappers) .................................................................. 102
6.11. Sending commands to clients......................................................................................... 102
6.12. Syslog logging................................................................................................................ 103
6.13. Server-to-server relay..................................................................................................... 104
6.14. Performance tuning ........................................................................................................ 104

7. Hooks for External Programs.................................................................................................... 106
7.1. Pipes ................................................................................................................................. 106
7.2. System V message queue................................................................................................. 106
7.3. Calling external programs ................................................................................................ 106

8. Additional Features — Signed Configuration/Database Files ................................................ 110
8.1. The samhainadmin script ................................................................................................. 112

9. Additional Features — Stealth .................................................................................................. 114
9.1. Hiding the executable....................................................................................................... 114
9.2. Packing the executable ..................................................................................................... 117

10. Deployment to remote hosts..................................................................................................... 119
10.1. Method A: The deployment system ............................................................................... 119
10.2. Method B: The native package manager........................................................................ 129

iv



11. Security Design.......................................................................................................................... 133
11.1. Usage.............................................................................................................................. 133
11.2. Integrity of the samhain executable ............................................................................... 133
11.3. Client executable integrity ............................................................................................. 134
11.4. The server....................................................................................................................... 135
11.5. General ........................................................................................................................... 135

A. List of options for the ./configure script................................................................................... 137
A.1. General ............................................................................................................................ 137
A.2. Optional modules to perform additional checks ............................................................. 139
A.3. OpenPGP Signatures on Configuration/Database Files .................................................. 140
A.4. Client/Server Connectivity .............................................................................................. 140
A.5. Paths ................................................................................................................................ 141

B. List of command line options .................................................................................................... 143
B.1. General ............................................................................................................................ 143
B.2. samhain............................................................................................................................ 144
B.3. yule .................................................................................................................................. 144

C. Configuration file syntax and options ...................................................................................... 146
C.1. General ............................................................................................................................ 146
C.2. Files to check................................................................................................................... 149
C.3. Severity of events ............................................................................................................ 149
C.4. Logging thresholds .......................................................................................................... 150
C.5. Watching login/logout events .......................................................................................... 151
C.6. Checking for kernel module rootkits............................................................................... 152
C.7. Checking for SUID/SGID files........................................................................................ 152
C.8. Checking for mount options ............................................................................................ 153
C.9. Checking for user files..................................................................................................... 154
C.10. Checking for hidden/fake/required processes ............................................................... 154
C.11. Checking for open ports ................................................................................................ 155
C.12. Logfile monitoring/analysis........................................................................................... 156
C.13. Database ........................................................................................................................ 157
C.14. Miscellaneous ................................................................................................................ 158
C.15. External ......................................................................................................................... 164
C.16. Clients............................................................................................................................ 165

D. List of database fields ................................................................................................................ 166
D.1. General ............................................................................................................................ 166
D.2. Modules........................................................................................................................... 168
D.3. Syslog.............................................................................................................................. 168

E. List of recognized file types ....................................................................................................... 169

v



Chapter 1. Introduction

samhain is a file and host integrity and intrusion alert system suitable for single hosts as well as for
large, UNIX-based networks. samhain offers advanced features to support and facilitate centralized
monitoring.

In particular, samhain can optionally be used as a client/server system with monitoring clients on
individual hosts, and a central log server that collects the messages of all clients.

The configuration and database files for each client can be stored centrally and downloaded by clients
from the log server. Using conditionals (based on hostname, machine type, OS, and OS release, all
with regular expresions) a single configuration file for all hosts on the network can be constructed.

The client (or standalone) part is called samhain, while the server is referred to as yule. Both can run
as daemon processes.

1



Chapter 2. Compiling and installing

Samhain as a client/server system: This chapter focuses on building a standalone samhain
executable. For a client/server system, client and server executable are built from the same
source, but with different options for the ’configure’ script (see Section 2.4>).

Please refer to the chapter Chapter 6 for an explanation of the client/server setup.

2.1. Overview

Download:

sh$ wget http://la-samhna.de/samhain/samhain-current.tar.gz

Extract (and verify PGP signature):

sh$ gunzip -c samhain-current.tar.gz | tar xvf -

sh$ gpg --verify samhain-N.N.N.tar.gz.asc samhain-N.N.N.tar

sh$ gunzip samhain-N.N.N.tar.gz | tar xvf -

sh$ cd samhain-N.N.N

Configure:

sh$ ./configure

Compile:

sh$ make

Install:

sh$ make install

2



Chapter 2. Compiling and installing

Customize:

sh$ vi /etc/samhainrc

Initialize the baseline database:

sh$ samhain -t init

Start the samhain daemon:

sh$ samhain -t check -D

2.2. Requirements

POSIX environment

Samhain will only compile and run in a POSIX operating system, or an emulation thereof (e.g.
the free Cygwin POSIX emulation for Windows XP/2000).

ANSI C compiler and build system

You need an ANSI C compiler to compile samhain. The GNU C compiler (GCC)
(http://www.gnu.org/software/gcc/gcc.html) from the Free Software Foundation (FSF)
(http://www.gnu.org/) is fine. If your vendor’s compiler is ANSI compliant, you should give it a
try, since it might produce faster code. Also you will need to have standard tools like make in
your PATH (the make tool is part of the POSIX standard).

[OPTIONAL] GnuPG

If you want to use signed configuration and database files (this is an optional feature), GnuPG
(gpg) must be installed.

[OPTIONAL] libacl/libattr

Samhain can check and verify POSIX ACLs (access control lists, on operating systems
supporting them) and SELinux attributes (Linux). This feature is only compiled in if the

3



Chapter 2. Compiling and installing

required libraries and header files are present (e.g. on Linux the libacl/libattr development
packages; in Debian these are named libacl1-dev, libattr1-dev).

[OPTIONAL] libz

Samhain can store the content of files in the baseline database (for files smaller than 9200 bytes
after zlib compression). This feature is only available if the zlib library and header files are
present (e.g. on Linux the libz development package; in Debian this is named zlib1g-dev).

[OPTIONAL] PCRE

Samhain can monitor logfiles of other applications, e.g. Syslog, Apache (or other webservers
with similar log formats), Samba, or pacct (BSD-style process accounting). This extension
requires the PCRE (Perl Compatible Regular Expressions) library, e.g. on linux the libpcre
package (and for compiling, also the libpcre development package). In Debian, this would be
libpcre3 and libpcre3-dev.

2.3. Download and extract

The current version of samhain can be downloaded from
http://www.la-samhna.de/samhain/samhain-current.tar.gz. Older versions of samhain are available
from the online archive (http://www.la-samhna.de/samhain/archive.html). You should always make
sure that you have a complete and unmodified version of samhain. This can be done by verifying the
PGP signature (see below).

The downloaded tarball will contain exactly two files:

1. A tarball named samhain-N.N.N.tar.gz (N.N.N is the version number) containing the source
tree, and

2. the PGP signature for this tarball, i.e. a file named samhain-N.N.N.tar.gz.asc.

sh$ wget http://la-samhna.de/samhain/samhain-current.tar.gz

sh$ gunzip samhain-current.tar.gz | tar tvf -

-rw-r--r-- 500/100 920753 2004-05-24 19:57:55 samhain-1.8.8.tar.gz
-rw-r--r-- 500/100 189 2004-05-24 19:58:29 samhain-1.8.8.tar.gz.asc

You might wish to verify the PGP signature now, in order to make sure that you have received a
complete and unmodified version of samhain. All samhain releases are signed with the key
0F571F6C (Rainer Wichmann).

Key fingerprint = EF6C EF54 701A 0AFD B86A F4C3 1AAD 26C8 0F57 1F6C

sh$ gpg --keyserver blackhole.pca.dfn.de --recv-keys 0F571F6C

sh$ gpg --verify samhain-N.N.N.tar.gz.asc samhain-1.8.8.tar.gz

4



Chapter 2. Compiling and installing

Now you can proceed to extract the source tarball:

sh$ gunzip samhain-N.N.N.tar.gz | tar tvf -

This will create a new subdirectory samhain-N.N.N under your current directory. You should cd
into this subdirectory to proceed with configuring the source:

sh$ cd samhain-N.N.N

2.4. Configuring the source

Before you can start to compile, it is neccessary to configure the source for your particular platform
and your personal requirements. This is done by running the configure in the source directory. If
you type ./configure with no options, the source will get configured with the default options. In
particular, a standalone version of samhain will get built which uses the Filesystem Hierarchy
Standard (FHS) for file/directory layout. This is not the standard GNU layout of ’everything under
/usr/local’.

Paths: (A) samhain is a Filesystem Hierarchy Standard (FHS) compliant application. Thus the
default directory layout is not the standard GNU layout (see Section 2.10>).

(B) samhain has a concept of trusted users, and will refuse to run if the path to critical files is
writeable by users not in its list of trusted users (default: root, and the user who has started
samhain). Please read Section 2.10.1> for details.

To change the defaults, ./configure accepts a variety of command-line options and environment
variables (use ./configure --help for a complete list). The available command line options are listed
and explained in Appendix A>.

To configure a standalone version of samhain:

sh$ ./configure [more options]

Important remark on client/server use: Please read Chapter 6> if you intend to use samhain
as a client/server system. Things will not work automagically just because you compiled a client
and a server version of samhain. In particular, clients need to authenticate themselves to the
server, and special configure options are required if you want to keep the configuration file(s)
and the baseline database(s) on the central server.

To configure a client version of samhain that can connect to a central server:

5



Chapter 2. Compiling and installing

sh$ ./configure --enable-network=client [more options]

To configure a server version of samhain that will act as a central log server:

sh$ ./configure --enable-network=server [more options]

2.4.1. Some more configuration options

If you want to use any options/modules that are not enabled by default (e.g. because the majority of
users do not require them, or because they require additional programs and/or libraries), at this point
you need to specify such options:

• To compile in the module to check for SUID files (see Section 5.9>) use ./configure
--enable-suidcheck

• To compile in the module to detect kernel modifications/rootkits (see Section 5.10>) use
./configure --with-kcheck=/path/to/System.map

• To compile in the module to detect kernel modifications/rootkits (see Section 5.10>) use
./configure --with-kcheck=/path/to/System.map

• To compile in the module to monitor login/logout events (see Section 5.11>) use ./configure
--enable-login-watch

• To compile in the module to check mount options for mounted filesystems (see Section 5.12>) use
./configure --enable-mounts-check

• To compile in the module to specify files relative to user home directories (see Section 5.13>) use
./configure --enable-userfiles

• To compile in code for logging to an RDMS, (see Section 4.12>) use ./configure
--enable-xml-log --with-database=oracle/mysql/postgresql

• To compile in code for logging to the Prelude IDS, (see Section 4.9>) use ./configure
--with-prelude

• To use PGP-signed configuration files, (see Chapter 8>) use ./configure
--with-gpg=/path/to/gpg. Please review Chapter 8> for further information and additional
options to compile in the key fingerprint and/or the checksum of the gpg executable.

• To compile samhain for use of the ’stealth’ options to hide its presence, please review Chapter 9>
for the available options.

• To configure a server version of samhain that will act as a central log server, use ./configure
--enable-network=server

• To configure a client version of samhain that can connect to a central server, use ./configure
--enable-network=client. Please refer to the chapter Chapter 6 for an explanation of the
client/server setup, in particular further options that you need if you want to store configuration
files and baseline databases on the server (see Section 6.5>).

6



Chapter 2. Compiling and installing

2.5. Build

After configuring the source, to build samhain you just have to type the command:

sh$ make

The standalone/client executable (samhain) and the log server (yule) cannnot be compiled
simultaneously. You need to run ./configure && make separately for both.

If you want to use your native package manager for installation, you might rather want to build a
binary package. samhain has support for RPM (rpm), Debian (deb), Gentoo (tbz2), HP-UX (depot),
and Solaris packages. Instead of simply typing make, you need to type:

sh$ make rpm|deb|tbz2|depot|solaris-pkg

This will create a custom binary package according to the options that you used when configuring
the source (see previous section). For more details, see Section 10.2>.

If you don’t want to include documentation, you can instead use:

sh$ make rpm-light|deb-light|depot-light|tbz2-light|solaris-pkg-light

Finally, the Makefile supports building a portable (Unix) binary installer package based on the
makeself installer ((c) 1998-2004 Stephane Peter). There will be no documentation included. Just
type:

sh$ make run

2.6. Install

After successful compilation, you can install samhain by typing:

sh$ make install

The installation routine will not overwrite your configuration file from a previous installation.

Executables will be stripped upon installation. On Linux i386 and FreeBSD i386, the sstrip utility
(copyright 1999 by Brian Raiter, under the GNU GPL) will be used to strip the executable even
more, to prevent debugging with the GNU gdb debugger.

7



Chapter 2. Compiling and installing

After installation, you will be offered to run make install-boot in order to install the init scripts that
are required to start samhain automatically when your system (re-)boots. For many operating
systems (Linux, *BSD, Solaris, HP-UX, IRIX), configure will generate init scripts, and make
install-boot will figure out which of them to install, and where (if the correct distribution cannot be
determined, none of them will be installed).

sh$ make install-boot

2.6.1. Important make targets
sh$ make install

Create the required directories (if not existing already), and install the compiled executable and the
configuration file.

bash$ make DESTDIR=/somedir install

Install as if /somedir is the root directory. Useful for creating packages or installing for chroot
(server).

sh$ make install-boot

Install runlevel start/stop scripts or create inittab entry (AIX) in order to start the daemon upon
system boot. Supported on Linux, *BSD, Solaris, HP-UX, AIX(*), IRIX(*) [(*) untested].

sh$ make uninstall

Uninstall the executable and remove directories if empty. Does not uninstall the configuration file.

sh$ make purge

As make uninstall, but also remove the the configuration file.

sh$ make uninstall-boot

Uninstall the runlevel start/stop scripts.

Tip: You can save the script samhain-install.sh and use it for uninstalling if you ever want to
remove samhain:

sh$ samhain-install.sh purge

sh$ samhain-install.sh uninstall-boot

8



Chapter 2. Compiling and installing

2.7. Customize

samhain comes with default configuration files for several operating systems: samhainrc.linux,
samhainrc.solaris, samhainrc.freebsd, samhainrc.aix5.2.0 (and yulerc for the
server). The installation routine will choose the one matching closest your system, or fall back to
samhainrc.linux, if no good match could be found. However, all these configuration files are kept
very general, and most probably you want to adjust settings like:

• which files/directories should be checked

• which logging facilities should be used

The default location of the configuration file is /etc/samhainrc (see Section 2.10>). To
customize, type:

sh$ vi /etc/samhainrc

The default configuration file is heavily commented to help you. For a list of all runtime
configuration directives, please have a look at Appendix C>.

If you have any typos or other errors in your configuration file, samhain will log warning messages
upon startup including the corresponding line number of the configuration file.

2.8. Initialize the baseline database

samhain works by comparing the present state of the filesystem agains a baseline database. Of
course, this baseline database must be initialized first (and preferably from a known good state !). To
perform the initialization (i.e. create the baseline database), type:

sh$ samhain -t init -p info

(with -p info, messages of severity ’info’ or higher will be printed to your terminal/console).

If the database file already exists, samhain -t init will append to it. This is a feature that is intended
to help you operating samhain in a slightly more stealthy way: you can append the database e.g. to a
JPEG picture (and the picture will still display normally - JPEG ignores appended ’garbage’).

Note:: It is usually an error to run samhain -t init twice, because (a) it will append a second
baseline database to the existing one, and (b) only the first baseline database will be used. Use
samhain -t update for updating the baseline database. Delete or rename the baseline database
file if you really want to run samhain -t init a second time.

9



Chapter 2. Compiling and installing

2.9. Run samhain

After successful initialization of the baseline database, you can run samhain in ’check’ mode by
typing:

sh$ samhain -t check

To run samhain as a daemon, you can either use the command line option ’-D’, or set daemon mode
in the configuration file with the option ’Daemon=yes’.

Tip: When testing samhain for the first time, you may want to use the command line option
--foreground to run samhain in the foreground rather than as daemon. This allows to spot the
reason for eventual problems much easier.

2.10. Files and directory layout
Tip: samhain has its own set of trusted users. Paths to critical files (e.g. the configuration file)
must be writeable by trusted users only. Failure to ensure this (e.g. by compiling in an appropriate
set of trusted users) is one of the most frequent reasons for problems. See below for details.

2.10.1. Trusted users and trusted paths

• Trusted users are root and the effective user of the process (usually, the effective user will be root
herself). Additional trusted users can be defined in the configuration file (see Sect. Section 4.5 for
an example), or at compile time, with the option

bash$./configure --with-trusted=0,...

• A trusted path is a path with all elements writeable only by trusted users. samhain requires the
paths to the configuration and log file to be trusted paths, as well as the path to the pid file.

If a path element is group writeable, all group members must be trusted. If the path to the
configuration file itself is writeable by other users than root and the effective user these must be
defined as trusted already at compile time.

Note: The list of group members in /etc/group may be incomplete or even empty. samhain will
check /etc/passwd (where each user has a GID field) in addition to /etc/group to find all
members of a group.

10



Chapter 2. Compiling and installing

2.10.2. Directory layout

samhain conforms to the FHS, which mandates a directory layout that is different from the default
GNU layout (everything in subdirectories under /etc/local).

Tip: There is an option ./configure --enable-install-name=NAME. When this option is used, not
only the executable is installed as NAME , but also in all the paths, samhain is replaced with
NAME .

Note: For the yule server, replace samhain with yule in the paths explained below.

The following table explains which directory layout results from ./configure --prefix=PREFIX

sbindir mandir sysconfdir localstatedir
PREFIX (none)

/usr/local/sbin /usr/local/man /etc /var

PREFIX USR (all capital)

/usr/sbin /usr/share/man /etc /var

PREFIX OPT (all capital)

/opt/samhain/bin /opt/samhain/man /etc/opt /var/opt/samhain

PREFIX /other

/other/sbin /other/share/man /other/etc /other/var

The file signature database will be written to localstatedir/lib/samhain/samhain_file, the pid file
to localstatedir/run/samhain.pid, and the log file to localstatedir/log/samhain_log. In
addition, yule writes an HTML status file to localstatedir/log/yule/yule.html

To get a more fine-grained control on the layout, the following configure options are provided

• --with-config-file=FILE — The path of the configuration file.

• --with-log-file=FILE — The path of the log file.

• --with-pid-file=FILE — The path of the pid file.

• --with-data-file=FILE — The path of the file signature database file.

• --with-html-file=FILE — The path of the HTML status file (server only).

11



Chapter 2. Compiling and installing

2.10.3. Runtime files

2.10.3.1. Standalone or client

Purpose Directory
Logfiles localstatedir/log/

Data files localstatedir/lib/samhain/

Pid file localstatedir/run/

2.10.3.2. Server

Note: The server will drop root privileges after startup. I does not need write access to the data
files, thus the data file directory is chmod 555 on installation. It does need write access to the log
file directory. As the system logfile directory usually is owned by root, the install script will by
default create a subdirectory and chown it to the unprivileged yule user. The PID file is written
before dropping root.

Purpose Directory
Logfiles localstatedir/log/yule/

Data files localstatedir/lib/yule/

Pid file localstatedir/run/

2.10.4. Installed files

2.10.4.1. Standalone or client

File Installed to Mode
samhain sbindir/samhain 700

samhainrc sysconfdir/samhainrc 600

samhain.8 mandir/man8/samhain.8 644

samhainrc.5 mandir/man5/samhainrc.5 644

(samhain_setpwd) sbindir/samhain_setpwd 700

(samhain_stealth) sbindir/samhain_stealth 700

2.10.4.2. Server

File Installed to Mode

12



Chapter 2. Compiling and installing

File Installed to Mode
yule sbindir/yule 700

yulectl sbindir/yulectl 700

yulerc sysconfdir/yulerc 600

samhain.8 mandir/man8/yule.8 644

samhainrc.5 mandir/man5/yulerc.5 644

samhain_setpwd sbindir/yule_setpwd 700

2.11. The testsuite

Samhain comes with a suite of verification/regression tests located in the test/ subdirectory of the
source tree.

The driver script is test/test.sh. Calling it without arguments will provide some usage
information. The script should be called as:

test.sh [options] <test_number>

The driver script is test/test.sh. Calling it without arguments will provide some usage
information. The script should be called as:

bash$ test/test.sh [options] <test_number>

The possible tests are:

1 -- Compile with many different options
2 -- Hash function
3 -- Standalone init/check
4 -- Microstealth init/check
5 -- External program call
6 -- Controlling the daemon (signal handling)
7 -- GnuPG signed files / prelude log
8 -- Suidcheck
10 -- Test client/server init/check
11 -- Test full client/server init/check
12 -- Test full client/server w/gpg
13 -- Test full client/server w/mysql (only with --really-all)
14 -- Test full client/server w/postgres (only with --really-all)
all -- All tests (non-applicable tests will be skipped)

The recognized options are as follows:

1. -q|--quiet No output; success/failure is reported vi exit status only.

13



Chapter 2. Compiling and installing

2. -v|--verbose Report additional information.

3. -s|--stoponerr Stop when a test fails.

4. --no-cleanup Don’t clean up generated test data (useful to investigate the reason for a failure).

5. --srcdir=... Tell the script the location of the source tree (not necessary if run from the top
source directory).

6. --color=always|never|auto Whether to use colour for output. Default is ’auto’ (no colour if
stdout is not a terminal).

7. --really-all This option enable additional test that are not run usually (see below).

The --really-all option: This option enables the following additional tests:

1. smatch As part of the compile test suite (test 1), the smatch checker will be used (see
smatch.sourceforge.net). Requires a appropriate setup (patched gcc in
/usr/local/gcc-smatch/bin/, smatch scripts in ../sm_scripts.

2. prelude logging Logging to prelude will be tested as part of test 7. Requires
prelude-manager, and requires that samhain is already registered as analyzer. This test is
designed such that it should not interfere with an eventually running instance of
prelude-manager.

3. mysql/postgresql logging Logging to mysql and/or postgresqlwill be tested with tests 13/14.
Requires a running database with an existing default setup (database/user/password =
samhain/samhain/samhain, table = log).

CAVEAT

The database tests (13/14) with --really-all will modify (i.e. log to) the
database. These are the only tests that are not confined to the directory where
the test is run.

14



Chapter 3. General usage notes

3.1. How to invoke

From the command line

• samhain -t init [more options] — To initialize the database

• samhain -t check [more options] — To check against the database

By default, samhain will not become a daemon, but stay in the foreground. Daemon mode must be
set in the configuration file or on the command line. Also by default, samhain will neither initialize
its file system database nor check the file system against it. The desired mode must be set in the
configuration file or on the command line. A complete list of command line options is given in the
appendix.

To start as daemon during the boot sequence

For Linux (Debian, Redhat, Gentoo, and SuSE), *BSD, Solaris, HP-UX, AIX, IRIX make
install-boot will setup your system for starting the daemon upon system boot (if the correct
OS/distribution cannot be determined, nothing will be done).

For any other system, you need to figure out by yourself how to start samhain during the boot
sequence.

3.2. Using daemontool (or similar utilities)

samhain does not auto-background itself (to become a daemon) unless explicitely specified in the
config file or on the command line. However, normally it runs in single-shot mode if not used as
daemon. To cause samhain to enter the main loop while running in the foreground (as required if you
want to use daemontool), you need to start with the option -f or --forever. Note that yule, the server,
will always loop.

3.3. Controlling the daemon

As part of their boot concept, some systems have individual start/stop scripts for each service
(daemon). As a minimum, these scripts take either ’start’ or ’stop’ as argument, sometimes also e.g.
’reload’ (to reload the configuration), ’restart’, or ’status’ (check whether the daemon is running).
While this is convenient, there are also a number of problems:

15



Chapter 3. General usage notes

• Some systems do not have such start/stop scripts.

• There is no standard for the location of these scripts.

• There is no standard for the arguments such a script may take, neither for their interpretation (e.g.:
on Linux distribution XYZ, do the start/stop scripts take ’status’ as argument, and if, is the status
reported by printing a message or by the exit status ?)

To provide a portable interface for controlling the samhain daemon, the executable itself can serve
for this purpose (only if invoked by the superuser) The supported actions, which must be given as
first argument on the command line, are:

• start Start samhain. Arguments after ’start’ are passed to the process. Daemon mode will be
enforced, as well as running in ’check’ mode, irrespective of command line or config file settings.

• stop Stop the daemon. On Linux and Solaris, actually all running instances of samhain are
stopped, even if no pid file is available.

• restart Stop and start.

• reload or force-reload Reload the configuration file.

• status Check whether the daemon is running.

Success/failure is reported via the exit status as follows: 0 Success. (On Linux/Solaris, stop will
always be successful, on other systems only if the pid file is found.) 1 Unspecified error. 4 User had
insufficient privilege. 5 Program is not installed. 7 Program is not running.

If the status command is given: 0 Program is running. 1 Program is dead and /var/run pid file exists.
3 Program is stopped. 4 Program status is unknown.

I.e., this interface behaves as mandated by the LSB Standard for init scripts.

3.4. Signals

On startup, all signals will be reset to their default. Then a signal handler will be installed for all
signals that (i) can be trapped by a process and (ii) whose default action would be to stop, abort, or
terminate the process, to allow for graceful termination.

For SIGSEGV, SIGILL, SIGBUS, and SIGFPE, a ’fast’ termination will occur, with only minimal
cleanup that may result in a stale pid file being left.

16



Chapter 3. General usage notes

If the operating system supports the siginfo_t parameter for the signal handling routine (see man
sigaction), the origin of the signal will be checked.

The following signals can be sent to the process to control it:

• SIGUSR1 Switch on/off maximally verbose output to the console.

• SIGUSR2 Suspend/continue the process, and (on suspend) send a message to the server. This
message has the same priority as timestamps. This signal allows to run samhain -t init -e none on
the client to regenerate the database, with download of the configuration file from the server, while
the daemon is suspended (normally you would get errors because of concurrent access to the
server by two processes from the same host).

• SIGTERM Terminate the process.

• SIGQUIT Terminate the server process after processing all currently pending requests from
clients. Terminate the client process after finishing the current task (from the terminal, SIGQUIT
usually is Ctrl-\).

• SIGHUP Re-read the configuration file. Note that it is not possible to override command-line
options given at startup.

• SIGTTIN / SIGABRT Unlock the log file, wait three seconds, then proceed. At the next access, the
log file will be locked again and a fresh audit trail -- with a fresh signature key -- will be started.
This allows log rotation without splitting an audit trail. See Sect.~Section 4.5.1.

• SIGTTOU Perform a file check. Only client/standalone, and only in daemon mode.

3.5. PID file

samhain generates a PID file if it is run as a daemon process. You can configure the path to the PID
file at compile time, either explicitely using the ./configure --with-pid-file=FILE option, or via the
./configure --prefix=PREFIX option.

3.6. Log file rotation

samhain locks the logfile using a lock file. This lock file has the same path as the log file, with .lock
appended. After sending SIGTTIN or SIGABRT to the samhain daemon, it will first finish its current
tast (this may take some time), then unlock the log file (i.e. remove the logfile.lock file), wait
three seconds, then proceed. Thus, to rotate the log file, you should use something like the following
script:

#! /bin/sh

if test -f /usr/local/var/run/samhain.pid; then \

17



Chapter 3. General usage notes

PIN=‘cat /usr/local/var/run/samhain.pid‘; \
/bin/kill -TTIN $PIN; \
sleep 1; \
AA=0; \
while test "x$AA" != "x120"; do \
let "AA = $AA + 1"; \
if test -f /usr/local/var/log/samhain_log.lock; then \
sleep 1; \

else \
break; \

fi \
done; \

fi
mv /usr/local/var/log/samhain_log /usr/local/var/log/oldlog

If you use the ’logrotate’ tool, you could use the following (untested):

/usr/local/var/log/samhain_log {
size 100k
nocreate
compress
mail root@localhost
maillast

prerotate
if test -f /usr/local/var/run/samhain.pid; then \
PIN=‘cat /usr/local/var/run/samhain.pid‘; \
/bin/kill -TTI $PIN; \
sleep 1; \
AA=0; \
while test "x$AA" != "x120"; do \
let "AA = $AA + 1"; \
if test -f /usr/local/var/log/samhain_log.lock; then \
sleep 1; \

else \
break; \

fi \
done; \

fi
endscript

}

3.7. Updating the file signature database

The samhain daemon only reads the file signature database on startup (also see Section 5.4.4 on
this). You can update the database while the daemon is running, as long as you don’t interfere with
its logging (i.e. you should run samhain -t update -l none to make sure the log file is not accessed).
Interactive updates are supported with the command line flag --interactive

18



Chapter 3. General usage notes

If you are using samhain in client/server mode and keep the baseline database on the server, then
there are two ways to update the database:

• The preferred method is to use the web-based (PHP4) beltane (http://www.la-samhna.de/beltane/)
frontend, which allows to review client messages and to perform server-side updates of baseline
databases.

• Temporarily scp the baseline database to the client, run samhain -t update, and scp the baseline
database back to the server. If you want to keep the client daemon running during the update, you
need to avoid concurrent access to the log file (use ’-l none’ for the update process). Also, you
need to avoid concurrent access to the server (use ’-e none’ for the update process).

If you must access the server concurrently (e.g. to download the configuration file for the update
process), you need to suspend the client daemon process temporarily using SIGUSR2 (note that
SIGSTOP/SIGCONT will not do what you want, because the daemon must inform the server that
it is about to suspend). Use SIGUSR2 again to wake up the daemon from suspend mode.

3.8. Improving the signal-to-noise ratio

To get a good signal-to-noise ratio (i.e. few false alerts), you need to know which files should be
checked, and which not (looking at the ’last modified’ timestamp may be helpful, if in doubt).

To see how to set recursion depths, implement ’check all but xxx’ policies etc., have a look at
Section 5.4.1.

As samhain runs a a daemon, it is capable to ’remember’ all file system changes, thus you won’t get
bothered twice about the same problem.

3.9. Runtime options: command-line & configuration
file

All command line options are described in Appendix B>. Note that depending on the ./configure
options used for compiling, not all options may be available. You can get a list of valid options with
samhain --help.

All settings in the configuration file, are described in Appendix C>. Note that depending on the
./configure options used for compiling, not all options may be available. If you are using
unsupported options, samhain will log warning messages upon startup, including the line number of
the offending line in the configuration file.

19



Chapter 3. General usage notes

3.10. Remarks on the dnmalloc allocator

As a proactive security measure, since version 2.4.5, samhain ships with dnmalloc (Dnmalloc Site
(http://fort-knox.org/)), a safer allocator that isn’t vulnerable by heap buffer overflows and/or double
free errors. I.e. with dnmalloc, it’s not possible to exploit such errors to run arbitrary code.

If you want to disable dnmalloc, you can do so at compile time with ./configure --disable-dnmalloc
[more options].

Unsupported operating systems: The dnmalloc allocator doesn’t work on: OpenBSD
(problems with pthread internals), Cygwin (also pthread internals), and 64bit FreeBSD. On 64bit
AIX, you need to compile as a 32bit application, or to forego dnmalloc.

Speed and memory overhead of dnmalloc:

Speed

Dnmalloc is as fast, or sometimes faster than, the GNU libc allocator (which is based on
ptmalloc).

Memory overhead

Reserved memory: "Reserved momory" is the amount of memory that the operating system
has reserved for an application, is backed by physical reasources (RAM or swap), and
hence is not available for other applications. In other words, "reserved momory" is the
actual resource usage of an application.

Because of deferred memory allocation, reserved memory can be less than what an application
has asked for, since memory is only reseved when it is used.

The actual memory overhead of dnmalloc is in the range of 20 per cent or less.

On top of that, dnmalloc allocates a huge (128MB/256MB for 32bit/64bit systems) table on
startup. This is basically a non-issue, since this table is only sparsely used, and hence
contributes very little to the "reserved memory", i.e. the actual resource usage of dnmalloc.

Both ’top’ and ’ps’ include this table in the ’virtual size’ (columns VIRT/VSZ in top/ps) of an
application using dnmalloc, thus giving the incorrect impression that physical swap storage
would be required to back this table, if it’s not resident in RAM (columns RES/RSS in top/ps).
In fact, since most parts of this table are never used, no physical storage (neither RAM nor

20



Chapter 3. General usage notes

swap) is ever reserved for them. Note that this is not true anymore if (on Linux) you’ve
switched off overcommiting completely (echo 2 > /proc/sys/vm/overcommit_memory).

3.11. Support / Bugs / Problems

If you have problems getting samhain to run, or think that you have encountered a bug, then please
check the FAQ first.

If your problem is not anwered there, you can visit the user forum (http://la-samhna.de/forum)
(which is searchable, by the way) and ask there for help (recommended for questions of probably
general interest), or send email to <support@la-samhna.de>.

Please remember that a useful problem report should at least include the following three items:

• What did you do ?

• What result did you expect ?

• What result did you obtain instead ?

Please be sure to provide relevant details, such as:

• your operating system, its release version, and the machine (uname -srm).

• your operating system, its release version, and the machine (uname -srm).

• the version of samhain that you are using, and the options that you have supplied to configure.

• If you think you have encountered a bug, it is usually very helpful if you run samhain in the
foreground (i.e. not as daemon) with the command line switch -p debug to get some more
information about the problem.

It would be even more helpful if you first re-compile samhain with configure --enable-debug, and
then run it with the command line switch -p debug (again, not as daemon, but in the foreground).

Please compress the output using gzip, and send it as attachment to <support@la-samhna.de>.

21



Chapter 4. Configuration of logging facilities

The configuration file for samhain is named samhainrc by default. Also by default, it is placed in
/etc. (Name and location is configurable at compile time). The distribution package comes with a
commented sample configuration file. The layout of the configuration file is described in more
details in Section C.1.

4.1. General

Events (e.g. unauthorized modifications of files monitored by samhain) will generate messages of
some severity. These messages will be logged to all logging facilities, whose threshold is equal to, or
lower than, the severity of the message.

4.1.1. Severity levels

The following severity levels are defined:

Level Significance
none Not logged.

debug Debugging-level messages.

info Informational message.

notice Normal conditions.

warn Warning conditions.

mark Timestamps.

err Error conditions.

crit Critical conditions.

alert Program startup/normal exit, or fatal error,
causing abnormal program termination.

inet Incoming messages from clients (server only).

Most events (e.g. timestamps, internal errors, program startup/exit) have fixed severities. The
following events have configurable severities:

• (server only) failure to resolve a client address (section [Misc], option SeverityLookup)

• policy violations (for monitored files)

• access errors for files

22



Chapter 4. Configuration of logging facilities

• access errors for directories

• obscure file names (with non-printable characters) and/or invalid UIDs/GIDs (no such user/group)

• login/logout events (if samhain is configured to monitor them)

Severity levels for events (see Section 4.1.1>) are set in the EventSeverity and (for login/logout
events) the Utmp sections of the configuration file.

In the configuration file, these can be set as follows:

[EventSeverity]
#
# these are policies
#
SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=warn
SeverityIgnoreNone=crit
SeverityIgnoreAll=info
#
# these are access errors
#
SeverityFiles=err
SeverityDirs=err
#
# these are obscure file names
# and/or invalid UIDs/GIDs (no such user/group)
#
SeverityNames=info
#
# This is the section for login/logout monitoring
#
[Utmp]
SeverityLogin=notice
SeverityLogout=notice
# multiple logins by same user
SeverityLoginMulti=err

4.1.2. Classes

Events of related type are grouped into classes. For each logging facility, it is possible to restrict
logging to a subset of these classes (see Section 4.3>). The available classes are:

Class Significance

23



Chapter 4. Configuration of logging facilities

Class Significance
EVENT Events to be reported (i.e. policy violations,

login/logout).

START Startup/stop messages.

STAMP Timestamp (heartbeat) messages.

LOGKEY The key to verify the signed log file.

ERROR Error messages.

OTHER Everything else (e.g. informational messages).

AUD System calls (for debugging).

The aforementioned classes represent a new, simplified classification scheme since version 1.8.2.
The previous scheme (listed below) will still work, and both can be mixed.

Class Significance
AUD System calls.

RUN Normal run messages (e.g. startup, exit, ...)

STAMP Timestamps and alike.

FIL Messages related to file integrity checking.

TCP Messages from the client/server subsystem.

PANIC Fatal errors, leading to program termination.

ERR Error messages (general).

ENET Error messages (network).

EINPUT Error messages (input, e.g. configuration file).

4.2. Available logging facilities

samhain supports the following facilities for logging:

• e-mail — samhain uses built-in SMTP code, rather than an external mailer program. E-mails are
signed to prevent forging.

• syslog — The system logging utility.

• console — If running as daemon, /dev/console is used, otherwise stderr. /dev/console can
be replaced by other devices, including a FIFO.

• log file — Entries are signed to provide tamper-resistance.

24



Chapter 4. Configuration of logging facilities

• log server — samhain uses TCP/IP with strong authentication and signed and encrypted messages.

• external — samhain can be configured to invoke external programs for logging and/or taking
some action upon certain conditions.

• SQL db — Currently samhain supports MySQL, PostgreSQL, Oracle, and unixODBC.

• Prelude — samhain can be compiled with support for the Prelude IDS, i.e. it can be used as a
Prelude sensor.

Each of these logging facilities has to be activated by setting an appropriate threshold on the
messages to be logged by this facility.

Note: In addition, some of these facilities require proper settings in the configuration file (see
next sections).

4.3. Activating logging facilities and filtering messages

All messages have a severity level (see Section 4.1.1>) and a class (see Section 4.1.2>), with
somewhat orthogonal meaning:

The severity ranks messages with respect to their importance. Most events (e.g. timestamps, internal
errors, program startup/exit) have fixed severities. However, as importance sometimes is a matter of
taste, some events have configurable severities (see Section 4.1>).

Classes refer to the purpose/category of a message. As such, they should (ideally) be useful to
exclude messages that are not interesting in some context (e.g. startup/stop messages may seem
useless noise if samhain is run from cron).

Obviously, as severity is a rank, the most natural way to exclude unwanted messages is to set a
threshold. On the other hand, as the message class is a category, the most natural way to exclude
messages is to list those message classes that you want.

Messages are only logged to a log facility if their severity is at least as high as the threshold of that
facility, and their class is one of those wanted (by default: all). Thresholds and class lists can be
specified individually for each facility.

Switching on/off: Most log facilities are off by default , and need to be enabled by setting an
appropriate threshold.

A threshold of none switches off the respective facility.

25



Chapter 4. Configuration of logging facilities

Logging of client messages by the server: By default, messages received by the server are
treated specially, and are always logged to the logfile, and never to mail or syslog. If you don’t
like that, use the option UseClientSeverity=yes (section [Misc]).

Thresholds and class lists are set in the Log section of the configuration file. For each threshold
option FacilitySeverity there is also a corresponding option FacilityClass to limit that facility
to messages within a given set of class. The argument must be a list of valid message classes,
separated by space or comma.

Actually, the FacilitySeverity can take a list of severities with optional specifiers ’*’, ’!’, or ’=’,
which are interpreted as ’all’, ’excluding’, and ’only’, respectively. Examples: specifying ’*’ is equal
to specify ’debug’; specifying ’!*’ is equal to specifying ’none’; ’info,!crit’ is the range from ’info’
to ’err’ (excluding crit and above); and ’info,!=err’ is info and above, but excluding (only) ’err’. This
is the same scheme as used by the Linux syslogd (see man 5 syslogd).

System calls: certain system calls (execve, utime, unlink, dup (+ dup2), chdir, open, kill, exit (+
_exit), fork, setuid, setgid, pipe) can be logged (only to console and syslog). You can determine the
set of system calls to log via the option LogCalls=call1, call2, .... By default, this is off
(nothing is logged). The priority is notice, and the class is AUD.

Example:

[Log]
#
# Threshold for E-mails (none = switched off)
#
MailSeverity=none
#
# Threshold for log file
#
LogSeverity=err
LogClass=RUN FIL STAMP
#
# Threshold for console
#
PrintSeverity=info
#
# Threshold for syslog (none = switched off)
#
SyslogSeverity=none
#
# Threshold for logging to Prelude (none = switched off)
#
PreludeSeverity=none
#
# Threshold for forwarding to the log server
#

26



Chapter 4. Configuration of logging facilities

ExportSeverity=crit
#
# Threshold for invoking an external program
#
ExternalSeverity=crit
#
# Threshold for logging to a SQL database
#
DatabaseSeverity=err
#
# System calls to log
#
LogCalls=open, kill

4.4. E-mail

It is possible to define email recipients at compile-time, but it is also possible to define recipients, or
aliases (lists of recipients) in the configuration file. Each recipient (list) definition starts with either:

SetMailAddress=recipient

or:

SetMailAlias=listname:addresslist

Filters and/or a threshold severity for the recipient (list) may follow. The definition of a recipient is
ended (a) explicitely when terminated with the line CloseAddress, or (b) implicitely when another
recipient (list) definition is started.

Items that can/must be configured are:

Recipients address

SetMailAddress=username@hostname

Each address must on a separate line in the configuration file.

Tip: it is recommended to use numerical IP addresses instead of host names (to avoid DNS
lookups).

27



Chapter 4. Configuration of logging facilities

Recipients address list

SetMailAlias=listname:addresslist

Define an alias for a list of (already defined) recipients. The format is listname ":" addresslist,
where addresses in addresslist can be separated by comma, tab, or space. Logging threshold
and filters (see below) can be set for a list as for an individual recipient, but will take effect only
for email that is specifically targeted at the list (e.g. via a per-queue rule in the logfile
monitoring module).

Logging threshold

SetAddrSeverity=severity

This defines a logging threshold severity for the last defined recipient (list). The syntax is the
same as for MailSeverity.

MailSeverity and SetAddrSeverity: The MailSeverity setting in the [Log] section defines
an upper bound for all recipients. Messages not included by the MailSeverity setting will
never be emailed.

NOT Filter

SetMailFilterNot=list_of_regexes

Defines a filtering condition for the last defined recipient (list). If there is no recipient (list)
defined yet, it applies to the compiled-in recipients.

List items are POSIX regular expressions. As whitespace (blank or tab) is a valid separator in a
list, strings with whitespace must be enclosed in single or double quotes. If a string begins with
a double quote, enclose it in single quotes (and vice versa).

If used, then NONE of the regular expressions in list can occur in a message, otherwise it will
not be sent by email.

AND Filter

SetMailFilterAnd=list

Order of evaluation: AND conditions are evaluated after all NOT conditions.

28



Chapter 4. Configuration of logging facilities

If used, then ALL strings in list must occur in a message, otherwise it will not be sent by email.
The syntax is the same as for SetMailFilterNot.

OR Filter

SetMailFilterOr=list

Order of evaluation: OR conditions are evaluated after all AND conditions.

If used, then AT LEAST ONE of the strings in list must occur in a message, otherwise it will
not be sent by email. The syntax is the same as for SetMailFilterNot.

Closing a recipient (list) definition

CloseAddress

This explicitely closes the definition of a recipient (list). However, this is optional syntactic
sugar (i.e. not really required), since recipient (list) definitions are closed implicitely by the
beginning of another recipient (list) definition (i.e. SetMailAddress or SetMailAlias).

Relay host / Mail exchanger

SetMailRelay=mail.some_domain.com

You may need this option because some sites don’t allow outbound e-mail connections from
any arbitrary host. If the recipient is offsite, and your site uses a mail relay host to route
outbound e-mails, you need to specify the relay host.

Maximum interval

SetMailTime=86400

You may want to set a maximum interval between any two consecutive e-mails, to be sure that
samhain is still ’alive’.

Maximum pending

SetMailNum=10

Messages can be queued to send several messages in one e-mail. You may want to set the the
maximum number of messages to queue. (Note: messages of highest priority (alert) are always
sent immediately. At most 128 messages can be queued.

29



Chapter 4. Configuration of logging facilities

Multiple recipients

MailSingle=yes/no

If there are multiple recipients, whether to send a single mail with the recipient list, or send
multiple mails. If all recipients are on same domain, a single mail may suffice, otherwise it
depends on whether the mail server supports forwarding (for security, most don’t).

Subject line

MailSubject=string

Here, string may contain the placeholders %T, %H, %S, and/or %M that will get replaced by
the time, hostname, message severity and message text, respectively. The default subject line is
equivalent to "%T %H". This option may be useful if you want to send emails to an
email-to-sms gateway.

Sender

SetMailSender=string

Here, string is the address that is inserted in the From: field. If a name without domain is given
(i.e. without ’@xyz.tld’), the FQDN of the local host will be added automatically.

SMTP port

SetMailPort=port_number

This option allows to specify a custom port for SMTP (the default is 25).

Example:

[Misc]
#
# Do not send messages about added files, and startup messages.
# We have no recipient defined yet, thus this applies to
# compiled-in recipients only (if there are any).
#
SetMailFilterNot = ’POLICY ADDED’, START
#
# E-mail recipient (offsite in this case).
#

30



Chapter 4. Configuration of logging facilities

SetMailAddress=username@host.some_domain.com
SetMailFilterNot = LOGKEY

CloseAddress
#
# Need a relay host for outgoing mail.
#
SetMailRelay=relay.mydomain.com
#
# Number of pending mails.
#
SetMailNum=10
#
# Maximum time between e-mails.
# Want a message every day, just to be sure that the
# program still runs.
#
SetMailTime=86400
#
# Do not send messages about added files, and startup messages
#
SetMailFilterNot = ’POLICY ADDED’, START
#
# To all recipients in a single mail.
MailSingle=yes

4.4.1. E-mail reports and their integrity

The subject line contains timestamp and local hostname, which are repeated in the message body.
samhain uses its own built-in SMTP code rather than the system mailer, because in case of
temporary connection failures, the system mailer (e.g. sendmail) would queue the message on disk,
where it may become visible to unauthorized persons.

During temporary connection failures, messages are stored in memory. The maximum number of
stored messages is 128. samhain will re-try to mail every hour for at most 48 hours. In conformance
with RFC 821, samhain will keep the responsibility for the message delivery until the recipient’s
mail server has confirmed receipt of the e-mail (except that, as noted above, after 48 hours it will
assume a permanent connection failure, i.e. e-mailing will be switched off).

The body of the mail may consist of several messages that were pending on the internal queue (see
Section 4.2>), followed by a signature that is computed from the message and a key. The key is
initialized with a random number, and for each e-mail iterated by a hash chain.

The initial key is revealed in the first email sent (obviously, you have to believe that this first e-mail
is authentic). This initial key is not transmitted in cleartext, but encrypted with a one-time pad
(Section 11.2>).

31



Chapter 4. Configuration of logging facilities

The signature is followed by a unique identification string. This is used to identify seperate audit
trails (here, a trail is a sequence of e-mails from the same run of samhain), and to enumerate
individual e-mails within a trail.

The mail thus looks like:

-----BEGIN MESSAGE-----
first message
second message
...
-----BEGIN SIGNATURE-----
signature
ID TRAIL_ID:hostname
-----END MESSAGE-----

Integrity verification: To verify the integrity of an e-mail audit trail, a convenience function is
provided:

samhain -M /mailbox/file/path

The mailbox file may contain multiple and/or overlapping audit trails from different runs of
samhain and/or different clients (hosts).

CAVEATS

Verification will fail, if the compiled-in key of the verifying executable is different
from the one that generated the message(s) (see Section 11.2>).

If you use a pre-compiled executable from some binary distribution, be sure to
read Section 11.2> carefully.

4.5. Log file

Trusted users

TrustedUser=username

If some element in the path to the log file is writeable by someone else than root or the effective
user of the process, you have to include that user in the list of trusted users (unless their UIDs
are already compiled in).

32



Chapter 4. Configuration of logging facilities

Separate log files for clients

UseSeparateLogs=yes/no

Only relevant on the server. Use a separate log file for (reports from) each client. The root name
of these log files will be the same as the main log file, with the client name appended.

4.5.1. The log file and its integrity

The log file is named samhain_log by default, and placed into /var/log by default (name and
location can be configured at compile time). If samhain has been compiled with the ./configure
--enable-xml-log option, it will be written in XML format.

Note: If you have compiled for stealth (Chapter 9>), you won’t see much, because if obfuscated,
then both a ’normal’ and an XML logfile look, well ... obfuscated. Use samhain -jL
/path/to/logfile to view the logfile.

The log file is created if it does not exist, and locked by creating a lock file, which has the same path
as the logfile, with a ".lock" appended. The lock file holds the PID of the process, which allows
samhain to recognize and remove a stale lock if there is no process with that PID.

On the log server, it is possible to use separate log files for individual clients. This can be enabled
with UseSeparateLogs=yes/no in the Misc section of the server configuration file. No locking will
be performed for client files (only one instance of the server can listen on the TCP port, thus there
will be no concurrent access).

The directory where the logfile and its lock file are located must be writeable only by trusted users
(see Section 2.10.1>). This requirement refers to the complete path, i.e. all directories therein. By
default, only root and the effective user of the process are trusted.

Audit trails (sequences of messages from individual runs of samhain) in the log file start with a
[SOF] marker. Each message is followed by a signature, that is formed by hashing the message with
a key.

The first key is generated at random, and sent by e-mail, encrypted with a one-time pad as described
in the previous section on e-mail. Further keys are generated by a hash chain (i.e. the key is hashed
to generate the next key). Thus, only by knowing the initial key the integrity of the log file can be
assured.

33



Chapter 4. Configuration of logging facilities

The mail with the key looks like:

-----BEGIN MESSAGE-----
message
-----BEGIN LOGKEY-----
Key(48 chars)[timestamp]
-----BEGIN SIGNATURE-----
signature
ID TRAIL_ID:hostname
-----END MESSAGE-----

Integrity verification: To verify the log file’s integrity , a convenience function is provided:

samhain -L /log/file/path

When encountering the start of an audit trail, you will then be asked for the key (as sent to you by
e-mail). You can then: (i) hit return to skip signature verification, (ii) enter the key (without the
appended timestamp), or (iii) enter the path to a file that contains the key (e.g. the mail box).

If you use option (iii), the path must be an absolute path (starting with a ’/’, not longer than 48
chars. For each audit trail, the file must contain a two-line block with the -----BEGIN LOGKEY-----
line followed by the line (Key(48 chars)[timestamp]) from the mail. Additional lines before/after
any such two-line block are ignored (in particular, if you collect all e-mails from samhain in a
mailbox file, you can simply specify the path to that mailbox file).

CAVEATS

Verification will fail, if the compiled-in key of the verifying executable is different
from the one that generated the message(s) (see Section 11.2>).

If you use a pre-compiled executable from some binary distribution, be sure to
read Section 11.2> carefully.

4.6. Log server

Server address

SetLogServer=my.server.address

You have to specify the server address, unless it is already compiled in. It is possible to specify
a second server that will be used as backup.

Note: If you want to store the configuration file on the server, the server address must be
compiled in.

34



Chapter 4. Configuration of logging facilities

Throughput throttling

SetThrottle=milliseconds

An option to throttle the throughput when downloading the database from the server. The
allowed maximum of 1000 msec throttles to about 64 kB/sec, less throttle means higher
throughput.

4.6.1. Details

During temporary connection failures, messages are stored in a FIFO queue in memory. The
maximum number of stored messages is 128. After a connection failure, samhain will make the next
attempt only after a deadtime that starts with 1 sec and doubles after each unsuccessful attempt (max
is 2048 sec). A re-connection attempt is actually only made for the next message after the deadtime
-- you should send timestamps (i.e. set the threshold to mark) to ensure re-connection attempts for
failed connections.

It is possible to specify two log servers in the client configuration file. The first one will be used by
default (primary), and the second one as fallback in case of a connection failure with the primary log
server.

4.7. External facilities

samhain can invoke external scripts/programs for logging (i.e. to implement support for pagers etc.).
This is explained in detail in Chapter 7>.

4.8. Console

Up to two console devices are supported, both of which may also be named pipes. If running as
daemon, samhain will use /dev/console for output, otherwise stdout. On Linux,
_PATH_CONSOLE will be used instead of /dev/console, if it is defined in the file
/usr/include/paths.h.

35



Chapter 4. Configuration of logging facilities

You can override this at compile time, or in the [Misc] section of the configuration file with the
SetConsole=device option. Up to two console devices are supported, both of which may also be
named pipes (use the SetConsole option twice to set both devices).

Switching off: Invariably, some users set SetConsole=/dev/null to switch off console logging.
This is highly ineffective, as the device will be opened, and the message written to it, for every
log message. The correct way is to use PrintSeverity=none in the [Log] section of the
configuration file (or the command line switch ’-p none’).

4.9. Prelude
REQUIREMENTS: This facility requires that you have compiled with the --with-prelude option to
include support for prelude. Of course you need the libprelude client library for this to work.

For Prelude 0.8, timestamp messages will automatically be converted to Prelude heartbeat messages.

For Prelude 0.9, timestamp messages are dropped, and the built-in heartbeat mechanism of the
libprelude library is used.

Note: The following configuration options can only be used with libprelude 0.9. The should be
placed the [Misc] section of the configuration file, if you use them. The ’PreludeMapTo...’ options
do not affect in any way whether a message is reported by samhain to the prelude manager (for
this there is ’PreludeSeverity’ in the [Log] section); they only affect the ’Impact severity’ shown on
the prelude side.

PreludeProfile

PreludeProfile=profile_name

Specify the profile to use. The default is ’samhain’.

PreludeMapToInfo

PreludeMapToInfo=list of samhain severities

The severities that should be mapped to impact severity ’info’ for prelude. (default: none).

36



Chapter 4. Configuration of logging facilities

PreludeMapToLow

PreludeMapToInfo=list of samhain severities

The severities that should be mapped to impact severity ’low’ for prelude. (default: debug, info).

PreludeMapToMedium

PreludeMapToMedium=list of samhain severities

The severities that should be mapped to impact severity ’medium’ for prelude. (default: notice,
warn, err).

PreludeMapToHigh

PreludeMapToHigh=list of samhain severities

The severities that should be mapped to impact severity ’high’ for prelude. (default: crit, alert).

4.9.1. Prelude-specific command-line options

With libprelude 0.9, the following prelude-specific command-line options are accepted:

1. --prelude Prelude generic options are following. This option must be given before the following
options are used.

2. --profile <arg> Profile to use for this analyzer

3. --heartbeat-interval <arg> Number of seconds between two heartbeats

4. --server-addr <arg> Address where this sensor should report to (addr:port)

5. --analyzer-name <arg> Name for this analyzer

4.9.2. Registering to a Prelude 0.9 manager

Sensor name/profile: For libprelude 0.9, the default sensor name/profile is ’samhain’. However,
version 2.0.6 of samhain still had ’Samhain’ (as for libprelude 0.8). For versions of samhain later
than 2.0.6, there is an option PreludeProfile=profile (in the [Misc] section) to set a
user-defined name/profile.

37



Chapter 4. Configuration of logging facilities

In order to register samhain as a Prelude sensor, you need to run on the sensor host and on the
manager host the prelude-adduser command.

sensor # prelude-adduser register samhain "idmef:w admin:r" <manager host>

- Using default TLS settings from /usr/local/etc/prelude/default/tls.conf:
- Generated key size: 1024 bits.
- Authority certificate lifetime: unlimited.
- Generated certificate lifetime: unlimited.

- Adding analyzer samhain.
- Creating /usr/local/etc/prelude/profile/samhain...
- Using already allocated ident for samhain: 1312010545704259.
- Creating /usr/local/var/spool/prelude/samhain...

- Registring analyzer samhain to localhost.

You now need to start "prelude-adduser" on the server host where
you need to register to:

use: "prelude-adduser registration-server <analyzer profile>"
example: "prelude-adduser registration-server prelude-manager"

This is used in order to register the ’sending’ analyzer to the ’receiving’
analyzer. <analyzer profile> should be set to the profile name of the
’receiving’ analyzer, the one where ’sending’ analyzer will register to.

Please remember that "prelude-adduser" should be used to register
every server used by this analyzer.

Enter the one-shot password provided by the "prelude-adduser" program:

- Enter registration one shot password:

manager # prelude-adduser registration-server prelude-manager

- Using default TLS settings from /usr/local/etc/prelude/default/tls.conf:
- Generated key size: 1024 bits.
- Authority certificate lifetime: unlimited.
- Generated certificate lifetime: unlimited.

- Adding analyzer samhain.
- Creating /usr/local/etc/prelude/profile/samhain...
- Using already allocated ident for samhain: 1312010545704259.
- Creating /usr/local/var/spool/prelude/samhain...

- Starting registration server.
- generated one-shot password is "fz64g2h2".

This password will be requested by "prelude-adduser" in order to connect.
Please remove the first and last quote from this password before using it.

- Waiting for peers install request...

38



Chapter 4. Configuration of logging facilities

You now have to type in the one-shot password generated on "manager" at the password prompt on
"sensor", (twice, for confirmation). Then on "manager" you will be asked to approve the registration.
Type ’y’, and you are finished.

The configuration file for the samhain sensor is
/usr/local/etc/prelude/profile/samhain/config

4.9.3. Registering to a Prelude 0.8 manager

Sensor name/profile: For libprelude 0.8, the sensor name/profile is ’Samhain’.

In order to register samhain as a Prelude sensor, you need to run on the Prelude manager the
command: manager-adduser, and on the client the command sensor-adduser --sensorname
Samhain --uid 0 --manager-addr x.x.x.x.

Both commands are interactive, and apparently should be run simultaneously, where
manager-adduser will generate a ’one-shot password’ that must be entered in sensor-adduser. This
is how it looks on the Prelude manager:

bash$ manager-adduser

Generated one-shot password is "0ltdgbgy".

This password will be requested by "sensor-adduser" in order to connect.
Please remove the first and last quote from this password before using it.

- Waiting for install request from Prelude sensors...
- Connection from 127.0.0.1.
sensor choose to use PLAINTEXT communication method.
successfully created user calvin.

Sensor registered correctly.

And this is the dialog on the client:

bash$ sensor-adduser --sensorname Samhain --uid 0 --manager-addr 127.0.0.1

Now please start "manager-adduser" on the Manager host where
you wish to add the new user.

Please remember that you should call "sensor-adduser" for each configured
Manager entry.

39



Chapter 4. Configuration of logging facilities

Press enter when done.

Please use the one-shot password provided by the "manager-adduser" program.

Enter registration one shot password :
Please confirm one shot password :
connecting to Manager host (127.0.0.1:5553)... Succeeded.

Username to use to authenticate : calvin
Please enter a password for this user :
Please re-enter the password (comfirm) :
Register user "calvin" ? [y/n] : y
Plaintext account creation succeed with Prelude Manager.
Allocated ident for Samhain@somehost: 61534998304562071.

The libprelude client library has a configuration file
/etc/prelude-sensors/sensors-default.conf where you can configure e.g. the network
address of the Prelude manager.

4.10. Using samhain with nagios

After running ./configure, you will find the script check_samhain.pl in the subdirectory
scripts/ of the samhain distribution. The following recipe to use this script has been kindly
provided by kiarna:

Nagios runs as user ’nagios’. However, in order to check the filesystem, you typically want to run
samhain as ’root’. You can use sudo to fix this problem. In your /etc/sudoers file, add the line:

nagios ALL = NOPASSWD:/path/to/check_samhain

Next, add the service to the nagios file checkcommands.cfg:

# ’check_samhain’ command definition
define command{
command_name check_samhain
command_line /usr/bin/sudo -u root $USER1$/check_samhain -t 100
}

Checking the filesystem may take some time, so you may want to increase the nagios plugin timeout
by changing the following line in nagios.cfg from 60 to 100:

40



Chapter 4. Configuration of logging facilities

service_check_timeout=100

Then add the service to the appropriate section in the nagios service.cfg file.

4.11. Syslog

samhain will translate its own severities into syslog priorities as follows:

Severity Syslog priority
debug LOG_DEBUG

info LOG_INFO

notice LOG_NOTICE

warn LOG_WARNING

mark LOG_ERR

err LOG_ERR

crit LOG_CRIT

alert LOG_ALERT

Messages larger than 959 chars will be split into several messages. By default, samhain will use the
identity ’samhain’, the syslog facility LOG_AUTHPRIV, and will log its PID (process identification
number) in addition to the message.

The syslog facility can be modified via the directive SyslogFacility=command>LOG_xxx in the Misc
section of the configuration file.

The syslog priority to be used for heartbeat messages (timestamps) can be selected with the directive
SyslogMapStampTo=command>LOG_xxx in the Misc section of the configuration file. The default
is LOG_ERR.

4.12. SQL Database
Requirements: This facility requires that you have compiled with the --enable-xml-log option to
format log messages in XML (also for the client , even if you do SQL logging on the server), and
of course with the --with-database=XXX option (where ’XXX’ may be any of: mysql, postgresql,
oracle, or odbc).

If you are using the MessageHeader directive in the configuration file for a user-defined
message header, make sure that the log messages are still valid XML, and that all the default
entities are still present.

41



Chapter 4. Configuration of logging facilities

Currently MySQL, PostgreSQL, and Oracle are implemented and tested. Support for unixODBC is
implemented, but not fully tested. If the header file ’mysql.h’ (’libpq-fe.h’) is not found during
compilation (’mysql.h: No such file or directory’), you can use the option
--with-cflags=-I/dir/where/mysql.h/is. If the library libmysqlclient.a (libpq.a) is not found
(’/usr/bin/ld: cannot find -lmysqlclient’), you can use the option
--with-libs=-L/dir/where/libmysqlclient.a/is.

Note: PostgreSQL may fail with --enable-static. This is a postgresql bug.

By default, the database server is assumed to be on localhost, the db name is ’samhain’, the db table
is ’log’, and inserting is possible for any user without password. To create the database/table with the
required columns, the distribution includes the scripts ’samhain.mysql.init’, ’samhain.postgres.init’,
and ’samhain.oracle.init’. E.g., for PostgreSQL you would setup the database like:

$ su postgres
$ createdb samhain
$ createuser -P samhain
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
$ psql -d samhain < samhain.postgres.init
$ exit

. . . and for MySQL:

$ mysql -p -u root < samhain.mysql.init
$ mysql -p -u root
> GRANT SELECT,INSERT ON samhain.log TO ’samhain’@’localhost’;
> SET PASSWORD for ’samhain’@’localhost’ = PASSWORD(’...’);
> FLUSH PRIVILEGES;

Permissions: The PostgreSQL init script will grant INSERT permission only to a user ’samhain’.
Please take note that for PostgreSQL, inserting also requires SELECT and UPDATE permission
for the sequence ’log_log_index_seq’ (see bottom of init script). The MySQL init script will create
the database, but not the user, and will not grant any permissions.

As with all logging facilities, logging to the SQL database must be enabled in the configuration file
by setting an appropriate threshold, e.g.:

[Log]
DatabaseSeverity=warn

42



Chapter 4. Configuration of logging facilities

In the Database section of the configuration file, you can modify the defaults via the following
directives:

[Database]
SetDBName=db_name
SetDBTable=db_table
SetDBHost=db_host
SetDBUser=db_user
SetDBPassword=db_password
UsePersistent=yes/no

The default is to use a persistent connection to the database. You can change this with
UsePersistent=no

Note re. PostgreSQL: For PostgreSQL, db_host must be a numerical IP address.

When logging client messages, yule will wrap them into a server <log sev=”RCVT” tstamp=. . . >
. . . </log> message. The parser will then create a separate database entry for this server timestamp.
If you don’t like this, you can use the option SetDBServerTstamp=false.

The table field ’log_ref’ is NULL for client messages, 0 for server messages, and equal to
’log_index’ of the client message for the aforementioned server timestamp of a client message.

Log records can be tagged via a special (indexed) table field ’log_hash’, which is the MD5 checksum
of (the concatenation of) any fields registered with AddToDBHash=field. The beltane web-based
console can use these tags to filter messages. There is no default set of fields over which the MD5
hash is computed, so by default the tag is equal for all rows.

Tip: For security, you may want to set up a user/password for insertion into the db. However, as
the password is in cleartext in the config file (and the connection to the db server is not
encrypted), for remote logging this facility is less secure than samhain’s own client/server system
(it is recommended to run the db server on the log host and have the log server, i.e. yule, log to
the db).

4.12.1. Upgrade to samhain 2.3

Version 2.3 of Samhain supports checking of SELinux attributes and/or Posix ACLs. For backward
compatibility, this is off by default. If you upgrade Samhain and enable this option, you need to
update the database scheme as follows:

43



Chapter 4. Configuration of logging facilities

Mysql:

ALTER TABLE samhain.log ADD COLUMN acl_old BLOB;
ALTER TABLE samhain.log ADD COLUMN acl_new BLOB;

PostgreSQL:

ALTER TABLE samhain.log ADD COLUMN acl_old TEXT;
ALTER TABLE samhain.log ADD COLUMN acl_new TEXT;

Oracle:

ALTER TABLE samhain.log ADD acl_old VARCHAR2(4000);
ALTER TABLE samhain.log ADD acl_new VARCHAR2(4000);
DROP TRIGGER trigger_on_log;

4.12.2. Upgrade to samhain 2.4.4

Version 2.4.4 of Samhain supports storing the content of files. If you have created your Oracle
database using the database scheme from a previous version, you need to change at least the
’link_old’ and ’link_new’ columns from VARCHAR2 to CLOB:

ALTER TABLE samhain.log ADD tmp_name CLOB;
UPDATE samhain.log SET tmp_name=link_old;
ALTER TABLE samhain.log DROP COLUMN link_old;
ALTER TABLE samhain.log RENAME COLUMN tmp_name to link_old;

ALTER TABLE samhain.log ADD tmp_name CLOB;
UPDATE samhain.log SET tmp_name=link_new;
ALTER TABLE samhain.log DROP COLUMN link_new;
ALTER TABLE samhain.log RENAME COLUMN tmp_name to link_new;

4.12.3. MySQL configuration details

To pass the location of the MySQL Unix domain socket (for connections on localhost) to samhain,
you can use the environment variable MYSQL_UNIX_PORT (the value must be the path of the
socket).

Alternatively, as of samhain version 2.2, you can set options for the group "samhain" in my.cnf. See
the MySQL manual for the proper syntax (http://dev.mysql.com/doc/refman/5.0/en/option-files.html)

44



Chapter 4. Configuration of logging facilities

of the my.cnf file, as well as for possible options
(http://dev.mysql.com/doc/refman/5.0/en/mysql-options.html).

Note: It is not possible for an application (like e.g. samhain) to detect whether my.cnf is readable
(because the application does not know where the file resides). Interesting errors may result...

45



Chapter 5. Configuring samhain, the host
integrity monitor

The samhain file monitor checks the integrity of files by comparing them against a database of file
signatures, and notify the user of inconsistencies. The level of logging is configurable, and several
logging facilities are provided.

samhain can be used as a client that forwards messages to the server part (yule) of the samhain
system, or as a standalone program (for single hosts).

samhain can be run as a background process (i.e. a daemon), or it can be started at regular intervals
by cron.

Tip: It is recommended to run samhain as daemon, because

• samhain can remember file changes, thus while running as a a daemon, it will not bother you
with repetitive messages about the same problem, and

• using cron opens up a security hole, because between consecutive invocations the executable
could get modified or replaced by a rogue program.

5.1. Usage overview

To use samhain, the following steps must be followed:

1. The configuration file must be prepared (Section 5.4>, Section 4.1>, and Section 5.11> for
details).

• All files and directories that you want to monitor must be listed. Wildcard patterns are
supported.

• The policies for monitoring them (i.e. which modifications are allowed and which not) must
be chosen.

• Optionally, the severity of a policy violation can be selected.

• The logging facilities must be chosen, and the threshold level of logging should be defined To
activate a logging facility, its threshold level must be different from none.

• Eventually, the address of the e-mail recepient and/or the IP address of the log server must be
given.

46



Chapter 5. Configuring samhain, the host integrity monitor

2. The database must be initialized. If it already exists, it should be deleted (samhain will not
overwrite, but append), or update instead of init should be used:

samhain -t init|update

3. Start samhain in check mode. Either select this mode in the configuration file, or use the
command line option:

samhain -t check

To run samhain as a background process, use the command line option

samhain -D -t check

5.2. Available checksum functions

A cryptographic hash function is a one-way function H(foo) such that it is easy to compute H(foo)
from foo, but infeasible to compute foo from H(foo), or to find bar such that H(bar) = H(foo)
(which would allow to replace foo with bar without changing the hash function).

One common usage of a such a hash function is the computation of checksums of files, such that any
modification of a file can be noticed, as its checksum will change.

For computing checksums of files, and also for some other purposes, samhain uses the TIGER hash
function developed by Ross Anderson and Eli Biham. The output of this function is 192 bits long,
and the function can be implemented efficiently on 32-bit and 64-bit machines. Technical details can
be found at this page (http://www.cs.technion.ac.il/~biham/Reports/Tiger/).

As of version 1.2.10, also the MD5 and SHA-1 hash functions are available. (You need to set the
option DigestAlgo=MD5 or DigestAlgo=SHA1 in the config file to enable this). Note that MD5 is
somewhat faster, but because of security concerns it is not recommended anymore for new
applications.

47



Chapter 5. Configuring samhain, the host integrity monitor

5.3. File signatures

samhain works by generating a database of file signatures, and later comparing file against that
database to recognize file modifications and/or added/deleted files.

File signatures include:

• a 192-bit cryptographic checksum computed using the TIGER hash algorithm (alternatively
SHA-1 or MD5 can be used),

• the inode of the file,

• the type of the file,

• owner and group,

• access permissions,

• on Linux only: flags of the ext2 file system (see man chattr),

• the timestamps of the file,

• the file size,

• the number of hard links,

• minor and major device number (devices only)

• and the name of the linked file (if the file is a symbolic link).

Depending on the policy chosen for a particular file, only a subset of these may be checked for
modifications (see Section 5.4.1>), but usually all these informations are collected.

5.4. Defining file check policies: what, and how, to
monitor

This section explains how to specify in the configuration file, which files or directories should be
monitored, and which monitoring policy should be used.

5.4.1. Monitoring policies

samhain offers several pre-defined monitoring policies. Each of these policies has its own section in
the configuration file. Placing a file in one of these sections will select the respective policy for that
file.

48



Chapter 5. Configuring samhain, the host integrity monitor

The available policies (section headings) are:

ReadOnly

All modifications except access times will be reported for these files.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode,
checksum, size, mtime, ctime.

LogFiles

Modifications of timestamps, file size, and signature will be ignored.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode.

GrowingLogFiles

Modifications of timestamps, and signature will be ignored. Modification of the file size will
only be ignored if the file size has increased.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode, size >=
previous_size, checksum(file start up tp previous size) equals previous checksum.

Attributes

Only modifications of ownership, access permissions, and device number will be checked.

Checked: owner, group, permissions, file type, device number.

IgnoreAll

No modifications will be reported. However, the existence of the specified file or directory will
still be checked.

IgnoreNone

All modifications, including access time, but excluding ctime, will be reported - checking atime
and ctime would require to play with the system clock.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode,
checksum, size, mtime, atime.

User0

Initialized to: report all modifications.

49



Chapter 5. Configuring samhain, the host integrity monitor

User1

Initialized to: report all modifications.

User2

Initialized to: report all modifications.

User3

Initialized to: report all modifications.

User4

Initialized to: report all modifications.

Prelink

Modifications of timestamps, size, and inode will be ignored Checksums will be verified by
calling /usr/sbin/prelink --verify. This policy is intended for verification of prelinked
executables/libraries and/or directories containing such files. For details and further
configuration options see Section 5.4.8>.

Checked: owner, group, permissions, file type, device number, hardlinks, links, checksum.

Note: Each policy can be modified in the config file section Misc with entries like
RedefReadOnly=+XXX[,...] or RedefReadOnly=-XXX[,...] to add (+XXX) or remove
(-XXX) a (a comma-separated list of) tests XXX, where XXX can be any of CHK (checksum),
TXT (store file content in database), LNK (link), HLN (hardlink), INO (inode), USR (user), GRP
(group), MTM (mtime), ATM (atime), CTM (ctime), SIZ (size), RDEV (device numbers), MOD (file
mode), PRE (Linux; prelinked binary), SGROW (file size is allowed to grow), and/or AUDIT
(Linux; report who changed the file)

This must come before any file policies are used in the config file.

5.4.2. File/directory specification

Entries for files have the following syntax:

file=/full/path/to/the/file

Entries for directories have the following syntax:

dir=[recursion depth]/full/path/to/the/directory

50



Chapter 5. Configuring samhain, the host integrity monitor

The specification of a (numerical) recursion depth is optional (see Section 5.4.5>). (Do not put the
recursion depth in brackets — they just indicate that this is an optional argument!).

Wildcard patterns (’*’, ’?’, ’[...]’) as in shell globbing are supported for paths. The leading ’/’ is
mandatory. Since version 2.7.1, it is allowed to enclose the value of the directive (i.e. the path for
files, the optional recursion depth and the path for directories) within matching single or double
quotes, which allows to have trailing blanks (note: it is not neccessary to escape quotes in between -
the algorithm does not scan forward to find the matching quote, rather it uses the last character).
Also since version 2.7.1, C quoting style is supported (’\a’ [bell], ’\b’ [backspace], ’\f’ [form feed],
’\n’ [newline], ’\r’ [carriage return], ’\t’ [horizontal tab], ’\v’ [vertical tab], ’\\’ [backslash], ’\”
[single quote], ’\"’ [double quote], ’\nnn’ [dree digit octal value], \xNN’ [two digit hexadecimal
value]). Example:

[ReadOnly]
# valid examples
dir = /u01/oracle/archive00
dir = 7/u01/oracle/archive02
dir = "7/u01/oracle/archive03 "
dir = "7/u01/oracle/archi"ve"
dir = /u01/oracle/archive\v04
dir = /u01/oracle/archive\\04
dir = /u01/oracle/archive\076
file = ’/u01/oracle/archive\x0a’

# valid (no quote at start, thus quote at end
# is considered part of filename)
file = /u01/oracle/archive_0"

#invalid (no matching quote at end)
file = "/u01/oracle/archive_0

#invalid (\03 is bad, must be 3 digits [octal]
# or \x03 for hexadecimal)
file = /u01/oracle/archive_\03

#invalid (\g is undefined escape sequence)
file = /u01/oracle/archive_\g

Note on directories: A directory is (a) a collection of files, with (b) a directory special file where
a listing of all files in the directories is kept. This directory special file will be modified in case of a
file addition, removal, or renaming. Depending on the chosen policy, samhain will report on such
modifications of the directory special file.

The addition and/or deletion of files from a directory modifies the directory special file
(mtime/ctime). The addition/deletion of subdirectories will also modify the number of hardlinks of
the directory special file. A modification of a file may modify a directory special file
(mtime/ctime), if this modification is done by first creating a temporary file, followed by renaming
this temporary file to the original one.

51



Chapter 5. Configuring samhain, the host integrity monitor

5.4.2.1. Rules

1. For the file check, samhain does not follow symlinks. If the argument for a file=... directive is a
symlink, then the symlink itself is checked, not the location it points to.

2. The argument for a dir=... directive must be a directory. Using a symlink to a directory as
argument is incorrect.

3. Precedence is given to the most specific location in the filesystem regardless of the order listed
in the config file. I.e.,

• a policy for a specific file overrides the policy for its directory

• a policy for a subdirectory overrides the policy for its parent directory

• if a directory or file path are explicitly listed twice in two different policy sections, Samhain
will print a warning and honor only the first stanza processed. "First matching rule wins."
Note however that it is perfectly ok to list a directory both as file=/path and dir=/path (see
next rules).

4. Checking a directory with dir=... will check both the content of the directory as well as the
directory special file itself, honoring a local and global recursion depth, giving local preference.

5. Using a directory as argument for both a file=... and a dir=... directive will have the effect that

• the file=... directive will override the dir=... directive for the directory special file itself,

• while the dir=... directive remains in effect for the directory content.

6. The presence of a file=/parent/subdir, which is more specific of a path entry than that of the
parent directory in another policy section with a "deeper" recursion depth as dir=N/parent will
not prevent Samhain from descending into /parent/subdir and applying the higher level
directory with the "deeper" recursion policy to the contents of /parent/subdir The
more-specific rule will only apply to the directory special file and does not "truncate" the higher
level policy in any way.

7. To determine if you config file syntax is working as expected, increase the verbosity of
debugging when running samhain with "-t init" using "-p info" or even "-p debug".

Example 1: If you only want to check files in a directory, but not the directory inode itself, use:

[ReadOnly]
dir = /u01/oracle/archive00
[IgnoreAll]
file = /u01/oracle/archive00

# Note: /u01/oracle/archive00/archive01.dbf -> archive99.dbf *should* be
# mounted in the DB as a read-only tablespace and should never be
# changed, however, the DBA thinks he’s God and does not need to consult
# with the Admin, so he may be adding new, deleting, or renaming the
# DBFs using SQLPlus without consulting with the admin, so tell me about
# changes to the files inside that we know about at Samhain INIT but
# such as when he adds a file.

52



Chapter 5. Configuring samhain, the host integrity monitor

Example 2: If you want to monitor a directory, but not the dynamic contents inside it:

[Attributes]
file = /var/spool/mqueue
file = /tmp
[IgnoreAll]
dir=-1/var/spool/mqueue
dir=-1/tmp

Example 3: If you want to monitor a directory special file, while ensuring no files within are
removed but not the actual attributes of those files:

[Attributes]
file = /root
[IgnoreAll]
dir=0/root

Thanks to Brian A. Seklecki for his effort to clarify these rules and provide examples.

5.4.3. Suppress messages about new/deleted files

If you want to suppress messages about the creation of certain files (e.g. rotated log files), you can
use the options IgnoreAdded=/fullpath/with_some_regex_inside and/or
IgnoreMissing=/fullpath/with_some_regex_inside (to be placed in the [Misc] section of
the configuration files. If you want to add more regular expressions, you can use these options
multiple times.

Note: The argument to IgnoreAdded and IgnoreMissing must be a regular expression that
matches the full path.To test your regex before putting in samhain, you do something like this:

# This regex matches all files added by logrotate (e.g: messages.1 or messages.2.gz, etc.)
cd /var/log
for file in *; do echo $file| egrep "(cron|ksyms|maillog|messages|rpmpkgs|secure|spooler|up2date|wmtp)\.[0-9](\.gz)?$" ; done

Once it’s work this way, you can add it to your samhainrc file, but don’t forget to add the full path.
e.g:

IgnoreAdded = /var/log/(cron|ksyms|maillog|messages|rpmpkgs|secure|spooler|up2date|wmtp)\.[0-9](\.gz)?$

This tip has been provided by jim at aegis hyphen corp dot org.

Alternative: If a directory is added to [Attributes] as a file=/dir, then only the directory special file
is monitored for permissions/ownership. The advantage is that additions/removals of files to that
subdirectory can happen without recourse, but the integrity of that directory is defended.
Assuming the administrator doesn’t want to get granular level of detail.

Good for such directories as: /var/mail /var/cron/tabs /var/tmp /tmp

53



Chapter 5. Configuring samhain, the host integrity monitor

This tip has been provided by Brian A. Seklecki

5.4.4. Dynamic database update
(modified/disappeared/new files)

samhain reads the file signature database at startup and creates an in-memory copy. This in-memory
copy is then dynamically updated to reflect changes in the file system.

I.e. for each modified/disappeared/new file you will receive an alarm, then the in-memory copy of
the file signature database is updated, and you will only receive another alarm for that file if it is
modified again (or disappears/appears again).

Note that the on-disk file signature database is not updated (if you have signed it, the daemon could
not do that anyway). However, as long as the machine is not rebooted, there should be no need to
update the on-disk file signature database.

If files disappear after initialization, you will get an error message with the severity specified for file
access errors (except if the file is placed under the IgnoreAll policy, in which case a message of
SeverityIgnoreAll — see Section 4.1.1> — is generated).

If new files appear in a monitored directory after initialization, you will get an error message with
the severity specified for that directory’s file policy (except if the file is placed under the IgnoreAll
policy, in which case a message of SeverityIgnoreAll — see Section 4.1.1> — is generated).

The special treatment of files under the IgnoreAll policy allows to handle cases where a file might be
deleted and/or recreated by the system more or less frequently.

5.4.5. Recursion depth(s)

Directories can be monitored up to a maximum recursion depth of 99 (i.e. 99 levels of subdirectories.
The recursion depth actually used is defined in the following order of priority:

1. The recursion depth specified for that individual directory (Section 5.4>). As a special case, for
directories with the policy IgnoreAll, the recursion depth should be set to 0, if you want to
monitor (the existence of) the files within that directory, but to -1, if you do not want samhain to
look into that directory.

2. The global default recursion depth specified in the configuration file. This is done in the
configuration file section Misc with the entry SetRecursionLevel=number

54



Chapter 5. Configuring samhain, the host integrity monitor

3. The default recursion depth, which is zero.

5.4.6. Hardlink check

As of version 1.8.4, samhain will by default compare the number of hardlinks of a directory to the
number of its subdirectories (including "." and ".."). Normally, these numbers should be equal. The
idea here is that a (kernel) rootkit may hide a directory, but fail to "fix" the parent directory hardlink
count (actually, I am not aware of any kernel rootkit that would care to fix the hardlink count of the
parent directory). This is an experimental feature; if there are any problems, it can be disabled with
the option UseHardlinkCheck=no in the [Misc] section of the configuration file.

Errors will be reported at the same severity as directory access errors option
SeverityDirs=severity in section [EventSeverity]).

MacOS X: This feature is not supported on MacOS X (because the resource fork is implemented
as an invisible directory, it modifies the parent directory hardlink count.)

5.4.6.1. Specify exceptions for the hardlink check

Some filesystems do not always follow the rule mentioned above (directory hardlink equals number
of subdirectories). E.g. the root directory of reiserfs partitions generally seems to have two additional
hardlinks. To account for such exceptions, you can specify exceptions with the option
HardlinkOffset=N :/path in the [Misc] section of the configuration file. Here, N is the numerical
offset (actual - expected hardlinks) for /path. For multiple exceptions, use this options multiple
times (note that ’/path N:/path2’ would itself be a valid path, so using the option only once with
multiple exceptions on the same line would be ambiguous).

Note: Please note that samhain will not check for an exception if the standard rule (offset = 0) is
true for a directory. Thus it will not warn if a directory that once was exceptional is not anymore.

5.4.7. Check for weird filenames

Samhain checks for weird filenames (containing control/nonprintable characters, newlines or tabs)
and warns about them at a severity level that is set with SeverityNames=severity in section
[EventSeverity]. The rationale is: most of the time, such names are either the result of user errors,
buggy scripts, or questionable activity.

55



Chapter 5. Configuring samhain, the host integrity monitor

If you want to add characters to the set of ’good’ ones, you can do so with the option:
AddOKChars=N1, N2, ... in the [Misc] section of the configuration file. Nn should be the
unsigned byte value of the character(s) in hex (leading ’0x’: 0xNN), octal (leading zero: 0NNN), or
decimal.

UTF-8 filenames: To specify that filenames are UTF-8 rather than ASCII, use
FileNamesAreUTF8=yes. Samhain will check for invalid UTF-8 sequences, and for filenames
ending with invisible characters.

Tip: This check will not be performed for files under the IgnoreAll policy. To completely disable
this check, use AddOKChars=all.

5.4.8. Support for prelink

prelink is a tool available on modern Linux systems that can significantly reduce the startup time of
applications. It does this by performing some of the work of the dynamic linker in advance. As this
changes both executables and shared libraries, file integrity verification will fail unless prelink is
supported, in particular as prelinking has to be redone if libraries are updated (so initializing the
checksum database after prelinking may not be good enough).

The disadvantage is that prelinking modifies libraries and executables, and may need to be redone
(potentially modifying all or many executables again) if a library is updated. This is a major problem
for file integrity checkers.

Version 2.0 of samhain and later support prelink. To use this support, you need to place prelinked
executables and libraries (or directories holding them) under the [Prelink] policy rather than under
the (e.g.) [ReadOnly] policy. For all files under the [Prelink] policy, inode, size, and timestamps will
be ignored (prelinking changes them). In addition, for ELF binaries under the [Prelink] policy,
/usr/sbin/prelink --verify will be used to compute checksums (i.e. the checksum will be computed
on the output of this command). For other files, checksums are computed as usual.

Speed: Obviously, invoking prelink results in a significant overhead, and slows down file
integrity checking (tests indicate a factor of three - your mileage may vary).

Verification failures (zero checksum): It seems that prelink --verify fails if the dependencies
of a prelinked binary have changed. This results in a zero checksum, and can be fixed by
re-prelinking the affected binary.

56



Chapter 5. Configuring samhain, the host integrity monitor

There are two configuration options in the [Misc] section that can are relevant for prelink support:

SetPrelinkPath=fullpath sets the path to the prelink executable. The default is
/usr/sbin/prelink.

SetPrelinkChecksum=checksum sets the TIGER192 checksum for the prelink executable. You can
compute this with samhain -H /usr/sbin/prelink (remove whitespace from the computed
checksum). If the checksum is set, samhain will verify the prelink executable immediately before
using it, otherwise prelink will be used without this special precaution.

5.4.9. SELinux attributes and Posix ACLs

Note for users of SQL database logging: You need to update the database scheme before
using this feature, if you are upgrading from a version below 2.3.0. See Section 4.12.1> for
details.

As of version 2.3, samhain supports checking and verifying of SELinux attributes and/or Posix
ACLs, if the operating system supports these features. SELinux attributes are a Linux-specific
feature, while Posix ACLs are supported by multiple operating systems.

These features will only get compiled if the required development environment is available on the
host where samhain is compiled (e.g. on Debian Linux, packages libattr1-dev and libacl1-dev).

For backward compatibility, these features are disabled by default, even if they are compiled in. To
enable them, use the configuration directives:

[Misc]
UseACLCheck = yes
UseSelinuxCheck = yes

5.4.10. Codes in messages about reported files

As of version 1.8.2, reports about modified files include a short code in the message field to describe
which properties have been modified. The codes are: ’C’ for ’checksum’, ’L’ for (soft) ’link’, ’D’ for
’device number’, ’I’ for ’inode’, ’H’ for (number of) ’hardlinks’, ’M’ for ’mode’, ’U’ for ’user’
(owner), ’G’ for ’group’ (owner), ’T’ for ’time’ (any), and finally ’S’ for ’size’.

As an example, ’C--I----TS’ would indicate that a file has been replaced by one with different
checksum, inode, timestamp, and size, but (e.g.) same mode (type and access permissions) and same
ownership.

57



Chapter 5. Configuring samhain, the host integrity monitor

5.4.11. Loose directory checking

If files are added to, or removed from a directory, or modified by writing a temporary file and
renaming it to the original, samhain will report the changed file as well as the changed directory
inode. If you regard the report on the directory inode as redundant, you can suppress it with the
option: LooseDirCheck=true in the [Misc] section of the configuration file. This will cause
samhain to ignore modified directory inodes if nothing else but size and timestamps has changed.

5.4.12. Storing the full content of a file

This is discussed in Section 5.20>.

5.4.13. Who made changes to a file?

First of all, the UID of the user who changed or created a file is not stored in the file metadata, and
hence in general not available. However, some operating systems may have non-standard security
enhancements to log such information.

In particular, sufficiently recent versions of the Linux kernel provide an audit subsystem that can be
used to gather such information if the required userspace tools are installed and the system is
properly configured.

It should be noted that the Linux audit subsystem does NOT audit every file access by default.
Rather, files are only audited if a watch is placed on them. What Samhain can do is making sure that
watches are indeed placed on all files of interest for you (as defined in the Samhain configuration
file), and collecting relevant information in case of an event.

Requirements and Audit System Configuration: (1) If you want Samhain to report who
changed a file, you need to have installed the Linux audit daemon (Debian: auditd, RedHat:
audit). In addition, on the machine where Samhain gets compiled the audit development
packages (Debian: libaudit-dev, RedHat: audit-libs-devel) are required.

(2) You are most likely interested in the auid , i.e. the audit UID which tracks the login user . This
UID is only set correctly if you are using the pam_loginuid PAM module, and in a correct way
even. Please read the man page for pam_loginuid carefully, and add the line

session required pam_loginuid.so

to the files /etc/pam.d/gdm, /etc/pam.d/login, /etc/pam.d/atd, /etc/pam.d/cron,
/etc/pam.d/sshd.

Do NOT add this line to /etc/pam.d/su or /etc/pam.d/sudo, as that will set auid=0 and hence
erase the track of the login user. If your system has a /etc/pam.d/common-session file, don’t
add it there if that file is included by the /etc/pam.d/su or /etc/pam.d/sudo file(s).

58



Chapter 5. Configuring samhain, the host integrity monitor

(3) The audit daemon enables the audit system in the kernel. Therefore all processes starting
earlier than the audit daemon itself may get an auid=4294967295 (unknown). To avoid this
problem, add audit=1 to the kernel boot parameters.

(4) The audit daemon must be running. You can check that with the command auditctl -s, which
should show a non-zero PID for the audit daemon. If it says ’pid=0’, you need to enable the audit
daemon. First, make sure the daemon will autostart on boot: on RedHat/CentOS use chkconfig
auditd on, on Debian/Ubuntu use update-rc.d auditd defaults. Second, start the daemon with
/etc/init.d/auditd start.

Samhain supports the Linux audit system insofar as it can automatically mark files of interest for
logging, and automatically collects and reports the log information after a change has been detected.
This implies that you don’t need to maintain two separate configurations (one for Samhain and one
for the audit daemon).

In order to activate this feature for some particular file or directory, you have to add the AUDIT flag
to the policy under which you place the file or directory (see Section 5.4.1>). Note that placing an
audit rule on a directory will cause the whole file hierarchy under that directory to be audited. Also
note that you cannot place an audit rule on the root directory itself. This is a limitation of the Linux
audit system itself, not of Samhain. You have to place audit rules on the individual directories in the
root directory.

[Misc]
#
RedefReadOnly = +AUDIT
#
[ReadOnly]
#
file = /etc/login.defs
dir = /bin
#

The rules set by Samhain are flagged with samhain, i.e. you can check them with auditctl -l -k
samhain, and delete them manually with auditctl -D -k samhain. See the man page of the auditctl
command for further reference.

If you want to verify that the audit system works properly, you can e.g. use ausearch -k samhain to
see all audit log entries generated by rules flagged with ’samhain’, i.e. inserted by Samhain.

Persistance of audit rules: If Samhain runs in the foreground, it will not delete the inserted
rules upon exit. This is to ensure that file changes are still audited as desired when Samhain is
run only occasionally or at fixed intervals (e.g. as a cron job). If you want to delete the rules, use
the command auditctl -D -k samhain.

59



Chapter 5. Configuring samhain, the host integrity monitor

5.4.14. Skip checksumming for particular files

Checksumming can put a high I/O load on a machine, and in some cases one might want to skip this
for particular files. As of version 2.8.2, Samhain allows to specify certain conditions for which
checksumming of a file should be skipped. These are:

match_prefix( string )

Skip checksumming if the full path of the file starts with the given string (e.g.:
/home/someuser).

match_regex( regular_expression )

Skip checksumming if the full path of the file matches the given POSIX regular expression
(e.g.: .*\.mpg$).

size_exceeds( bytes )

Skip checksumming if the filesize exceeds the given size (in bytes).

match_permission( numeric_permission )

Skip checksumming if the file permissions exactly match the given one (as octal number, e.g.
0755 for rwxr-xr-x, or 4755 for rwsr-xr-x).

have_permission( numeric_permission )

Skip checksumming if the file permissions include the given one (as octal number, e.g. 0100 for
execute by owner).

match_filetype( filetype )

Skip checksumming if the file is of some particular type. See appendix for a list of supported
file types.

Files that should not be checksummed are specified with SkipChecksum=list of conditions

in the [Misc] section of the configuration file. The following rules apply:

1. To negate a condition, place an exclamation mark (’!’) in front of it.

2. All conditions in the given list are anded, i.e. checksumming for a file is skipped only if all
conditions in the list are true. E.g. you can place a match_prefix(string) condition at the start of
the list to avoid evaluation of the following condition(s) for files that should not be skipped.

3. If more than one SkipChecksum=... directives are given, then they are ored, i.e. checksumming
for a file is skipped if one of the directives matches.

60



Chapter 5. Configuring samhain, the host integrity monitor

5.4.14.1. User-defined file types

It is possible to add (at most 16) user-defined filetype descriptions to the compiled-in list. This can
be done with the directive FileType=description where the format of description is 8 fields,
separated by ’:’.

The 8 fields are offset:type:length:G1:G2:G3:Name:Teststring, which describe:

1. An optional offset into the file, can be at most 3072-length. Counting starts at 0, thus ’6’ would
mean the 7th byte of the file.

2. Type is 0 for a C string, 1 if binary, i.e. if the teststring contains NULL bytes,

3. Length should be 0 if the type is 0, othewise the length of the teststring if it is of type 1 (binary).

4. G1, G2, G2 give the filetype as GENERIC:MORE_SPECIFIC:EXACT, e.g.
IMAGE:COMPRESSED:JPG

5. The name field is currently unused and should hold a human-understandable description, e.g.
’Jpeg image’

6. The teststring is a string or yte pattern that is found at the given offset in files of this type. You
can use quoted-printable (qp) encoding (which is often used for e-mail) for arbitrary binary
patterns. A qp-encoded character (byte) consists of 3 characters: a "=" followed by the two-digit
hexadecimal value if the byte. Please note that NULL bytes MUST be qp-encoded as ’=00’, and
the equal sign (’=’) MUST be qp-encoded as ’=3D’.

A valid example would be FileType=6:0:0:IMAGE:COMPRESSED:JPG:JFIF Jpeg:JFIF (this
one is already compiled in). This would recognize any file with the string ’JFIF’ starting at the 7th
byte (counting starts at ’0’) as a Jpeg image.

5.5. Excluding files and/or subdirectories (All except
. . . )

To exclude individual files from a directory, place them under the policy IgnoreAll. Note that the
existence of such files will still be checked (see next section).

To exclude subdirectories from a directory, place them under the policy IgnoreAll with an individual
recursion depth of -1 (see Section 5.4.5>).

Note: Changes in a directory may also modify the directory inode itself (i.e. the special file that
holds the directory information). If you want to check all but a few files in a directory (say, /etc),
and you expect some of the excluded files to get modified, you should use a setup like:

61



Chapter 5. Configuring samhain, the host integrity monitor

[ReadOnly]
#
dir=/etc
#
[Attributes]
#
# less restrictive policy for the directory file itself
#
file=/etc
#
[IgnoreAll]
#
# exclude these file and directories
#
file=/etc/resolv.conf.save
dir=-1/etc/calendar
#

5.6. Timing file checks

In the Misc section of the configuration file, you can set the interval (in seconds) between succesive
file checks:

SetFilecheckTime=value

Alternatively, you can specify a crontab-like schedule with:

FileCheckScheduleOne=schedule

The schedule follows the same rules as crontab(5) entries, with two noteable exceptions: (a) lists are
not allowed, and (b) ranges of names (like Mon-Fri) are allowed. See man 5 crontab for details. You
can specify a list of schedules, with separate FileCheckScheduleOne=. . . directives on separate lines.

Note: If you need a list in your schedule, you can either use steps (like */2 for ’every two
minutes/hours/...), or you can specify a list of schedules, with separate
FileCheckScheduleOne=. . . directives on separate lines.

62



Chapter 5. Configuring samhain, the host integrity monitor

5.6.1. Using a second schedule

If you want to check some files rather often, while doing a more extensive check only sometimes,
this is supported as follows:

• Enclose all directories for the more extensive check in a %SCHEDULE_TWO ...
!%SCHEDULE_TWO block like:

%SCHEDULE_TWO
dir=/check/only/once/per/day
!%SCHEDULE_TWO

• Define an optional second schedule as follows (similar to FileCheckSchedule, you can specify a
list of schedules):

FileCheckScheduleTwo=schedule2

Rules:

1. All files and directories will always be checked at FileCheckScheduleTwo.

2. All single files (file=. . . ) will always be checked at both FileCheckScheduleOne and
FileCheckScheduleTwo (rationale: this is required to check for missing/added files in
directories).

3. All directories outside the %SCHEDULE_TWO block will be checked at both
FileCheckScheduleOne and FileCheckScheduleTwo.

4. All directories inside the %SCHEDULE_TWO block will be checked at
FileCheckScheduleTwo only.

Missing files: If you are using a second schedule, the full check for missing files will only be
done at FileCheckScheduleTwo. For paths directly defined in the configuration, e.g. with file=...,
samhain will detect immediately if the file is missing, if the path is checked at
FileCheckScheduleOne.

63



Chapter 5. Configuring samhain, the host integrity monitor

5.7. Initializing, updating, or checking

In the Misc section of the configuration file, you can choose between initializing the database,
updating it, or checking the files against the existing database:

ChecksumTest=init|update|check|none

If you use the mode none, you should specify on the command line one of init, update, or check,
like: samhain -t check

As of version 1.8.1, there is a new command line flag --interactive to enable interactive updates. If
you use this flag together with -t update, you will be asked if the database entry should be updated,
whenever samhain encounters a modified file.

5.8. The file signature database

The database file is named samhain_file by default, and placed into
/usr/local/var/lib/samhain by default (name and location can be configured at compile
time).

The database is a binary file. For security reasons, it is recommended to store a backup copy of the
database on read-only media, otherwise you will not be able to recognize file modifications after its
deletion (by accident or by some malicious person).

samhain will compute the checksum of the database at startup and verify it at each access. samhain
will first open() the database, compute the checksum, rewind the file, and then read it. Thus it is not
possible to modify the file between checksumming and reading.

5.9. Checking the file system for SUID/SGID binaries

To compile with support for this option, use the configure option

./configure --enable-suidcheck

If enabled, this will cause the samhain daemon to check the whole file system hierarchy for
SUID/SGID files at user-defined intervals, and to report on any that are not included in the file
database. Upon database initialization, all SUID/SGID files will automatically be included in the
database. Excluded are nfs, proc, msdos, vfat, and iso9660 (CD-ROM) file systems, as well as file

64



Chapter 5. Configuring samhain, the host integrity monitor

systems mounted with the ’nosuid’ options (the latter is not supported on all OSes, but at least on
Linux).

On Linux, files that are marked as candidates for mandatory locking (group-id bit set, group-execute
bit cleared) will be ignored.

You can manually exclude one directory (see below); this should be used only for obscure problems
(e.g.: /net/localhost on Solaris - the automounter will mirror the root directory twice, as
’/net/localhost’ and ’/net/localhost/net/localhost’, and any nfs file system in ’/’ will be labelled as ufs
system in ’/net/localhost/net/localhost’ . . . ).

Note: The SUID check is very I/O expensive. Using ’nice’ may not help, if the CPU is waiting for
I/O all the time anyway. To limit the load, the following options are provided:

You can schedule execution at fixed times with SuidCheckSchedule=schedule.

You can limit I/O with the SuidCheckFps=fps option (fps: files per second).

As an alternative to the SuidCheckFps option, you can use SuidCheckYield=yes. This will
cause the SuidCheck module to yield its time slice after each file. If SuidCheckYield is used, the
SuidCheckFps option will not take effect.

The schedule should have the same syntax as a crontab entry (see crontab(5) and example
below), with the following exceptions: (a) lists are not allowed, and (b) ranges of names are
allowed. If a schedule is given, the SuidCheckInterval option will not take effect. You can
specify a list of schedules with successive SuidCheckSchedule=... directives.

5.9.1. Quarantine SUID/SGID files

As of version 1.8.4, it is possible to quarantine new SUID/SGID files detected by samhain. To use
this option, you must first enable it with SuidCheckQuarantineFiles=yes. This tells the SuidCheck
module to quarantine any SUID/SGID files found after the initialization of the database using the
method selected in SuidCheckQuarantineMethod (see next paragraph). If this is used, the file will
be logged each time it is found and not added to the memory resident database.

You must also choose a method to be used to quarantine a SUID/SGID file:
SuidCheckQuarantineMethod=0/1/2. Currently, there are 3 methods implemented: 0 - Delete the
file from the system. 1 - Remove the SUID/SGID permissions from the file. 2 - Move the
SUID/SGID file to a quarantine directory. The quarantine directory is
DEFAULT_DATAROOT/.quarantine. Each file moved there has an additional file created that
contains information about the SUID/SGID file. For example, if a file /foo is an unauthorized
SUID/SGID file, then it will be removed and moved to /var/lib/samhain/.quarantine and
another file, foo.info, will be created in /var/lib/samhain/.quarantine with information
about /foo.

65



Chapter 5. Configuring samhain, the host integrity monitor

Important remarks

Methods 0 and 2 will by default not remove the original file, but rather truncate
to zero size and remove suid/sgid properties. If you really want to remove the
original file rather than truncate, you need to set the option
SuidCheckQuarantineDelete=yes

The rationale for this behaviour is that removing a file in an arbitrary directory
is considered to be dangerous, because the object that is unlinked may not be
the same object anymore that has been determined to be a suid/sgid file
before. You have been warned.

For additional security, samhain will recursively chdir into the parent directory
of the file to make sure there are no symlinks in the path. Also, a file will not be
truncated if it is a hardlink to another one.

No quarantining will be done if samhain is run in ’update’ mode, since it is
assumed that the current filesystem state is ok, and the database should be
updated to reflect the current state.

5.9.2. Configuration

This facility is configured in the SuidCheck section of the configuration file.

[SuidCheck]
# activate (0 for switching off)
SuidCheckActive=1
# interval between checks (in seconds, default 7200)
# SuidCheckInterval=86400
# scheduled check at 01:30 each night
SuidCheckSchedule=30 1 * * *
# this is the severity (see Section 4.1.1>)
SeveritySuidCheck=crit
# you may manually exclude one directory
SuidCheckExclude=/net/localhost
#
# limit on files per seconds
SuidCheckFps=250
# alternatively yield time slice after each file
# SuidCheckYield=yes
#
# Quarantine detected SUID/SGID files
# SuidCheckQuarantineFiles=no
#
# Quarantine Method

66



Chapter 5. Configuring samhain, the host integrity monitor

# 0 - Delete the file from the system.
# 1 - Remove the SUID/SGID permissions from the file.
# 2 - Move the SUID/SGID file to a quarantine directory.
# The quarantine directory is DEFAULT_DATAROOT/.quarantine.
# SuidCheckQuarantineMethod = 1
#
# Really delete if using methods 0 or 2
# SuidCheckQuarantineDelete = no

5.10. Detecting Kernel rootkits

This option is currently supported for Linux on the ix86 and x86_64 architectures, kernel versions
2.6.x (ix86, x86_64), and 2.4.x (ix86), and for FreeBSD/x86 (tested on FreeBSD 4.6.2, FreeBSD 5)
and OpenBSD/ix86 (tested with OpenBSD 3.8).

Warning

It is incorrect to assume that disabling support for loadable kernel modules
protects against runtime kernel modifications. It is possible to modify the
kernel via /dev/kmem as well, if this device is present and writeable.

To use this facility, you need to compile with the option:

./configure --with-kcheck=/path/to/System.map (Linux), or

./configure --with-kcheck (FreeBSD/OpenBSD).

On Linux, System.map is a file (sometimes with the kernel version appended to its name) that is
generated when the kernel is compiled, and is usually installed in the same directory as your kernel
(e.g. /boot), or in the root directory. To find it, you can use: locate System.map

Linux distributions without /dev/kmem: Many Linux distributions (including Ubuntu, RedHat,
and Fedora) compile their kernels without support for the /dev/kmem device. However, the
samhain kernel integrity check relies on information obtained from this device. To work around
this problem, as of version 2.7.0, samhain provides a loadable kernel module samhain_kmem.ko

which generates a file /proc/kmem that provides exactly the same information as /dev/kmem

would. If the kernel module is required, you will be prompted to compile and install it - using the
following commands - during the compilation of samhain.

sh$ make samhain_kmem.ko

sh$ sudo insmod samhain_kmem.ko

67



Chapter 5. Configuring samhain, the host integrity monitor

Updating the kernel: On Linux, after installing a new kernel, you need to configure five (5)
addresses (see configuration example below), otherwise the kernel check will not work anymore
(samhain needs to know the new position of some objects within the kernel). As explained
below, you can easily obtain the required values by grepping them from the System.map of your
new kernel, which should normally be installed into the /boot directory, together with the kernel.

If you need the samhain_kmem.ko kernel module because your kernel does not support the
/dev/kmem device, you will need to recompile this module for your new kernel as well.

Using the hiding kernel module: If you also use the option ./configure --enable-khide to use
a kernel module to hide the presence of samhain, the first detected modification of the
sys_getdents syscall (to list directories) will only cause a warning (rather than an error), as it is
presumed to be caused by the samhain_hide LKM).

You should NOT initialize the database with the samhain_hide LKM loaded (doing so might
result in the non-detection of a real rootkit if it also only modifies the sys_getdents syscall).

5.10.1. Configuration

This facility is configured in the Kernel section of the configuration file.

[Kernel]
# activate (0 for switching off)
KernelCheckActive=1
# interval between checks (in seconds, default 300)
KernelCheckInterval=20
# also check the interrupt descriptor table (default TRUE)
KernelCheckIDT=TRUE
# this is the severity (see section Section 4.1.1)
SeverityKernel=crit
#
# Only needed for Linux, after installing a new kernel. You need the address
# (first item in the grepped line), prefixed with ’0x’ to indicate
# hexadecimal format.
#
# this is the address of system_call (grep system_call System.map)
KernelSystemCall = 0xc0106cf8
#
# this is the address of sys_call_table (grep ’ sys_call_table’ System.map)
KernelSyscallTable = 0xc01efb98
#
# this is the address of proc_root (grep ’ proc_root$’ System.map)

68



Chapter 5. Configuring samhain, the host integrity monitor

KernelProcRoot = 0xc01efb98
#
# this is the address of proc_root_inode_operations
# (grep proc_root_inode_operations System.map)
KernelProcRootIops = 0xc01efb98
#
# this is the address of proc_root_lookup
# (grep proc_root_lookup System.map)
KernelProcRootLookup = 0xc01efb98

5.10.2. What is a kernel rootkit ?

A rootkit is a set of programs installed to "keep a backdoor open" after an intruder has obtained root
access to a system. Usually such rootkits are very easy to install, and provide facilities to hide the
intrusion (e.g. erase all traces from audit logs, install a modified ’ps’ that will not list certain
programs, etc.).

While "normal" rootkits can be detected with checksums on programs, like samhain does (the
modified ’ps’ would have a different checksum than the original one), this method can be subverted
by rootkits that modify the kernel at runtime, either with a loadable kernel module (LKM), i.e. a
module that is loaded into the kernel at runtime, or by writing to /dev/kmem (this allows to ’patch’ a
kernel on-the-fly even if the kernel has no LKM support).

Kernel rootkits can modify the action of kernel syscalls. From a users viewpoint, these syscalls are
the lowest level of system functions, and provide access to filesystems, network connections, and
other goodies. By modifying kernel syscalls, kernel rootkits can hide files, directories, processes, or
network connections without modifying any system binaries. Obviously, checksums are useless in
this situation.

5.10.3. Implemented integrity checks

When a system call (e.g. open() to open a file) is made by an application, the flow of control looks
like this:

1. An interrupt is triggered, and execution continues at the interrupt handler defined for that
interrupt. On Linux, interrupt 80 is used.

A rootkit could replace the kernels interrupt handler by an own function.

69



Chapter 5. Configuring samhain, the host integrity monitor

Samhain checks the Interrupt Descriptor Table for modifications.

2. The interrupt handler (named system_call() on Linux) looks up the address of the requested
syscall in the syscall table, and executes a jump to the respective address.

A rootkit may (a) modify the interrupt handler to use a (rootkit-supplied) different syscall table,
or (b) modify the entries in the syscall table to point to the rootkits replacement functions.

Samhain checks (a) the interrupt handler, and (b) the syscall table for modifications.

3. The syscall function is executed, and control returns to the application.

A rootkit may overwrite the syscall function to place a jump to its own replacement function at
the start of the syscall function.

Samhain checks the first few bytes of each syscall function for modifications.

In addition to these checks, Samhain will check the /proc inode to detect the adore-ng rootkit,
which does not modify any syscall execution, but rather the VFS (Virtual File System) layer of the
kernel.

On FreeBSD/OpenBSD, currently only the syscall table (2b) and the system call (3) are checked.

5.10.4. Error messages

Error messages start with ’POLICY KERNEL’. There are four types of them: (a) ’IDT’ signifies
modified interrupts: old and new address, segment, privilege level, and type are listed, (b)
SYSCALL: modified syscall table/syscall code interrupt handler, and (c) SYS_GATE: modified
interrupt handler for syscalls. (d) PROC: modified /proc system

If an empty slot in the interrupt descriptor table (old address zero) has been modified, this indicates
that a new interrupt has been installed. This cannot modify the behaviour of user applications (which
would not use that interrupt), but could be used by a dedicated (rootkit-supplied) application to
perform some action (e.g. elevate privileges).

Likewise, if an empty slot in the syscall table (syscall name sys_ni_syscall/_nosys) has been
modified, this cannot modify the behaviour of user applications, but again could be used by a
dedicated (rootkit-supplied) application to perform some action.

70



Chapter 5. Configuring samhain, the host integrity monitor

Note: As of version 1.8.4, kernel info is stored in the baseline database by (mis-)using fields that
normally describe some properties of files. You may therefore find that error messages have info
appended that looks like properties you would normally expect for a file (e.g. mtime, ctime,
link_path ...). This is required for server-side database update (if you use samhain as
client/server system).

5.11. Monitoring login/logout events

To compile with support for this option, use the configure option

./configure --enable-login-watch

samhain can be compiled to monitor login/logout events of system users. For initialization, the
system utmp file is searched for users currently logged in. To recognize changes (i.e. logouts or
logins), the system wtmp file is then used.

Optionally, it is possible to perform further checks for login events. All these additional checks are
off by default. The following checks are provided:

First login

Report on the first login from a host or a domain / subnet. This option is configured with the
directive:

LoginCheckFirst = no|yes|domain

If set to yes, samhain will issue a report when a user logs in from some host they haven’t logged
in from before. If set to domain, the domain (or C-class subnet, if the host cannot be resolved) is
checked instead of the host.

Statistical outlier

Report unusual login times. This option will only take effect once a user has logged in several
times, and a database of login times has been built which can be analyzed for statistical outlier
detection. Since this is based on statistics, it will inevitably cause false positives (legitimate
logins reported as outliers). This option is configured with the directive:

LoginCheckOutlier = no|yes|paranoid

71



Chapter 5. Configuring samhain, the host integrity monitor

If set to yes, samhain will issue a report when a login time is found to be an outlier with 99 per
cent probability. If set to paranoid, the required outlier probability is lowered to 95 per cent,
resulting in more reports and more false positives (legitimate logins reported as outliers).

Login date (global)

Report login events occuring outside some given date restrictions. This option is configured
with the directive:

LoginCheckDate = date

Possible values for date are: always, never, and workdays|saturday|sunday(list of time ranges),
e.g. workdays(8:00-10:00,13:00-16:00) or saturday(08:10-17:20). To set date restriction for
workdays (Mo-Fr) and saturday and/or sunday, use LoginCheckDate multiple times. The
internal time resolution is ten minutes, i.e. 8:09 will be interpreted as 8:00.

Login date (individual)

Report login events occuring outside some date restrictions defined for the given individual
user. This option, if defined for a given user, overrides the global setting above, and is
configured with the directive:

LoginCheckUserDate = user:date

Here, user must be the login name for a user, and date has to be given as in the global option.

This facility is configured in the Utmp section of the configuration file:

[Utmp]
#
# activate (0 for switching off)
#
LoginCheckActive=1
#
# interval between checks (in seconds)
#
LoginCheckInterval=600
#
# these are the severities (see section Section 4.1.1)
#
SeverityLogin=info
SeverityLogout=info
#
# multiple logins by same user
#

72



Chapter 5. Configuring samhain, the host integrity monitor

SeverityLoginMulti=crit

5.12. Checking mounted filesystem policies

To compile with support for this option, use the configure option

./configure --enable-mounts-check

samhain can be compiled to check if certain filesystems are mounted, and if they are mounted with
the appropriate options. This module currently supports Linux, Solaris, HP-UX (mount options as in
/etc/mnttab), and FreeBSD. The configuration of the module is done in the Mounts section of the
configuration file:

[Mounts]
#
# Activate (0 is off).
#
MountCheckActive=1
#
# Interval between checks.
#
MountCheckInterval=7200
#
# Logging severities. We have two checks: to see if a mount is there, and to
# see if it is mounted with the correct options.
#
SeverityMountMissing=warn
SeverityOptionMissing=warn
#
# Mounts to check for, followed by lists of options to check on them.
#
checkmount=/
checkmount=/var
checkmount=/usr
checkmount=/tmp noexec,nosuid,nodev
checkmount=/home noexec,nosuid,nodev

This module by the eircom.net Computer Incident Response Team.

73



Chapter 5. Configuring samhain, the host integrity monitor

5.13. Checking sensitive files owned by users

To compile with support for this option, use the configure option

./configure --enable-userfiles

samhain can be compiled to support checking of files that are specified as being relative to the a
user’s home directory. It is intended to detect interference with files that influence process behaviour
such as .profile It simply adds the appropriate file entries to the main samhain list, at the specified
alerting level.

[UserFiles]
#
# Activate (0 is off).
#
UserfilesActive=1

#
# Files to check for under each $HOME
# A specific level can be specified.
# The allowed values are:
# allignore
# attributes
# logfiles
# loggrow
# noignore
# readonly
# user0
# user1
# user2
# user3
# user4
#
# The default is noignore
#
UserfilesName=.login noignore
UserfilesName=.profile readonly
UserfilesName=.ssh/authorized_keys
#
# A list of UIDs where we want to check.
# The default is all.
# IF THERE IS AN OPEN RANGE, IT MUST BE LAST
#
UserfilesCheckUids=0,100-500,1000-

This module by the eircom.net Computer Incident Response Team.

74



Chapter 5. Configuring samhain, the host integrity monitor

5.14. Checking for hidden/fake/missing processes

To compile with support for this option, use the configure option

./configure --enable-process-check

This module enables samhain to check for processes that are:

(a) hidden from ps, i.e. running processes that are not listed by ps,

(b) fake, i.e. listed by ps although they don’t exist, and

(c) missing, i.e. processes that are required to run (as specified by the user), but are actually not
running.

The module works by searching the complete range of possible PIDs for processes, and comparing
the list of processes thus found against the output of ps. Note that the range of possible PIDs is
OS-specific, and in general must be configured by the user (except for Linux, where it is determined
automatically).

Threads: Threads (including kernel threads) may be detected as well; thus ps must be called
with the proper argument such that threads are listed as well, otherwise they will be reported as
hidden. On Linux, this is handled automatically by the code, for other operating systems, you can
use the configuration option ProcessCheckPSArg=arg to set the argument to ps.

E.g. OpenBSD needs ProcessCheckPSArg=axk such that kernel threads are listed as well.

OpenVZ: The OpenVZ virtualisation has one hidden process for each visible process (within the
container). If you run samhain within an OpenVZ container, use ProcessCheckIsOpenVZ=true
to automatically avoid false positives.

5.14.1. Example configuration
[ProcessCheck]
#
# Activate (default is on)
#
ProcessCheckActive = yes

# The severity of reports: debug/info/notice/warn/err/crit/alert
# (default is crit)
#

75



Chapter 5. Configuring samhain, the host integrity monitor

SeverityProcessCheck = crit

# The PID range (default is 0 to 32767)
#
ProcessCheckMinPID = 0
ProcessCheckMaxPID = 32767

# The interval (in seconds) for process checks (default is 300 sec)
#
ProcessCheckInterval = 300

# Specify a process that is required to run. The argument
# must be a POSIX regular expression that matches the
# output of ps (samhain will check whether the PID in the
# output of ’ps’ actually runs). You can use this option
# multiple times. Note that each matching substring in a line
# from the ’ps’ output is considered a successful match.
#
ProcessCheckExists = syslogd

# The ’configure’ script determines automatically
# the location of ’ps’ as well as whether it is
# Posix or BSD style. Therefore, these options may
# not be required. For ’ProcesscheckPSArg’, note
# that the first column must be the PID, except on
# Linux, where the format ’PID SPID ...’ is expected
# (spid = thread id), as shown by ’ps -eT’
#
# ProcessCheckPSPath = /usr/bin/ps
# ProcessCheckPSArg = -e

5.15. Checking for open ports

To compile with support for this option, use the configure option

./configure --enable-port-check

This module enables samhain to check for open ports (services) on the local machine, and report
ports that are open, but not listed in the configuration. Reports are like:

interface:portnumber/protocol (maybe_servicename)

This is a non-RPC service, e.g. 192.168.1.2:22/tcp (maybe_ssh). The service name is taken
from /etc/services, and prepended by maybe_, because samhain cannot determine whether
it really is the SSH daemon that is listening on this port.

76



Chapter 5. Configuring samhain, the host integrity monitor

interface:portnumber/protocol (servicename)

This is an RPC service, e.g. 192.168.1.2:2049/tcp (nfs). The service name is obtained by
querying the portmapper daemon. The portmapper daemon may return a service name as listed
in /etc/rpc, or just a number (if there is no name for the service). If the portmapper daemon
only returns the number of the RPC service, samhain will list RPC_number as servicename.

5.15.1. Options

By default, (only) the interface corresponding to the ’official name’ of the host will be scanned.
Additional interfaces can be added via the option PortCheckInterface=(list of) IP

address(es), where ’IP address’ is the address of the interface that should be scanned. You can
use this options multiple times to specify up to 15 additional interfaces, or supply a list of interfaces.

Note: While it is possible to misuse this option to specify an external IP address, the check will
only work for interfaces on the local machine.

Services (open ports) that are required or optional (allowed, but not required) can be specified with
the options PortCheckRequired=interface:service list, and/or
PortCheckOptional=interface:service list.

Services (open ports) that should be completely ignored can be specified with the option
PortCheckIgnore=interface:service list.

Here, ’interface’ should be the IP address of an interface, and ’service list’ the comma-separated list
of required/optional services. Each service must be listed as ’port/protocol’ (e.g. 22/tcp) for a
non-RPC service, and ’name/protocol’ for an RPC service (e.g. portmapper/tcp). If an RPC service
has no name, but just an RPC program number, then the name must be given as ’RPC_number’ (e.g.
RPC_100075).

By default, both TCP and UDP ports are scanned. To disable UDP scanning, the option
PortCheckUDP=boolean can be used.

Ports that should be skipped during the check can be specified with the option
PortCheckSkip=interface:port list.

Here, ’interface’ should be the IP address of an interface, and ’service list’ the comma-separated list
’port/protocol’ pairs (e.g.: 22/tcp,514/udp,...) to skip.

This option is different from PortCheckIgnore=... in two ways: (i) since it allows to skip ports only,
it does not work for RPC services which have no fixed port, and (ii) since the port is not probed, you
can avoid error messages by obnoxious deamons.

77



Chapter 5. Configuring samhain, the host integrity monitor

5.15.2. Example configuration
[PortCheck]
#
# Activate (default is on)
#
PortCheckActive = yes

# The severity of reports: debug/info/notice/warn/err/crit/alert
# (default is crit)
#
SeverityPortCheck = crit

# Services that are required. This example specifies ssl (22/tcp),
# smtp (25/tcp), http (80/tcp), and portmapper.
#
PortCheckRequired = 192.168.1.128:22/tcp,25/tcp,80/tcp,portmapper/tcp,portmapper/udp

# Services that are optional. This example specifies
# mysql (3306/tcp).
#
PortCheckOptional = 192.168.1.128:3306/tcp

# Additional interfaces to scan. This example presumes that
# the ’official hostname’ corresponds to 192.168.1.128, and
# that the machine has three more interfaces.
# 127.0.0.1 (localhost) is not listed, hence not scanned.
#
PortCheckInterface = 192.168.1.129
PortCheckInterface = 192.168.1.130
PortCheckInterface = 192.168.1.131

# The interval (in seconds) for port checks (default is 300 sec)
#
PortCheckInterval = 300

# By default, UDP ports are checked as well as TCP ports.
#
PortCheckUDP = yes

5.16. Logfile monitoring/analysis

This option is available with samhain version 2.5.0 and higher. To compile with support for this
option, use the configure option

./configure --enable-logfile-monitor

78



Chapter 5. Configuring samhain, the host integrity monitor

PCRE library required: This option requires the PCRE (Perl Compatible Regular Expressions)
library. Many Linux distributions split library packages into a runtime package (required to run a
dependent executable) and a development package (required to compile an executable). At least
on the build host where samhain is compiled, the development package is required if you use
this option.

This module enables samhain to monitor/analyze logfiles of other applications. Currently (samhain
2.5.0) the following logfile formats are supported:

• Syslog

• Apache (access and error log)

• Samba

• ’pacct’ BSD-style process accounting (also available on Linux)

Logfile analysis will always start from the point the last one ended; the pointer into the file is stored
persistently on disk. Logfile rotation is handled automatically as long as the rotated logfile remains
in the same directory and is not compressed (usually log rotation tools can be configured to compress
only after the second rotation, which is advisable for unrelated reasons - the logging application may
still have an open file pointer after logfile rotation).

Logfile entries can be filtered with Perl-style regular expressions (filter rules). Regular expressions
must match the whole logfile record. For efficiency, regular expressions can be grouped under a
common regular expression, i.e. if the group expression fails to match, no RE in the group is tried.
Furthermore, (groups of) regular expressions can be grouped by host, if the logfile(s) contain host
information (such as host information in centralized syslog server logfiles, or virtual host
information in Apache logfiles). Note that host->group->rule is supported (just as host->rule or
group->rule), while group->host->>rule isn’t.

Each filtering rule (regular expression) is assigned to an output queue. Currently (samhain 2.5.0)
queues only differ in the assigned severity of an event, but more options (per-queue mail addresses
for alerts) are under development.

Filtering rules are processed in the order given in the configuration file, i.e. the first match wins.

Blacklisting vs. whitelisting, and the ’trash’ output queue: Output queues are labelled. The
label ’trash’ is reserved and refers to the trash bin (no output, throw away log entries if the
matching rule is assigned to the ’trash’ queue).

If a logfile entry does not match any rule, it is reported (i.e. the default is whitelisting known-good
entries). To turn this into a blacklisting policy, simply add a catch-all rule at the end and assign it
to the ’trash’ queue.

79



Chapter 5. Configuring samhain, the host integrity monitor

5.16.1. Event Correlation

Sometimes it is desirable to report on the fact that several events happend at a similar time, possibly
in a particular order. As of version 2.6.1, samhain supports this in the following way:

5.16.1.1. Marking individual events to be correlated

First, individual events to be correlated need to be marked for keeping them, under an arbitrary
user-defined label, for an arbitrary user-defined time. So the rule for matching an event has to be
modified like this:

LogmonRule=KEEP(seconds,label):queue_label:(perl)regex matches a logfile entry
against the provided regular expression, AND keeps it for the specified time in seconds, with the
specified label. In other words, processing of this rule will be no different than other rules, except for
the fact that also a memory of the event is kept for the specified amount of time. So if you e.g. don’t
want a separate report for this individual event, just assign it to the trash queue.

5.16.1.2. Correlating the marked events

To correlate events labelled label_one, label_two, etc., just build a regular expression that matches
the labels, in the temporal order you want to check for. E.g. if the temporal order is irrelevant, you
may want to match (label_one.*label_two)|(label_two.*label_one). Use this expression in a rule
maked as CORRELATE(description), like this:

LogmonRule=CORRELATE(description):queue_label:(perl)regex

Old records in existing logfiles: Because the ’keep’ timeout is relative to the current time,
correlation of old entries in logfiles (i.e. when, at startup, an existing logfile with old entries is
scanned) will only work if you specify ’keep’ timeouts that are long enough to cover the whole
timespan from the first logfile record until now.

5.16.2. Reporting non-occurence of an event

To check whether a given event occurs at least once within some given interval, the rule for matching
an event can be modified like this:

80



Chapter 5. Configuring samhain, the host integrity monitor

LogmonRule=MARK(seconds,description):queue_label:(perl)regex matches a logfile
entry against the provided regular expression, AND checks whether is occurs at least once within the
specified interval (seconds).

Processing of this rule will be no different than other rules otherwise, so if you e.g. only want a
report for this event if it is missing, just assign it to the trash queue. However, in the latter case the
severity for reporting the messages must be set separately with the LogmonMarkSeverity directive,
because the ’trash’ queue has no severity assigned:

LogmonMarkSeverity=severity — Severity for reports on missing heartbeat messages if the
messages themselves are assigned to the ’trash’ queue (default: crit).

5.16.3. Reporting bursts of similar, repeated events

Samhain can automatically detect and report bursts of similar, repeated events in the monitored
logfiles. Here similar, repeated events refers to events that differ (only) in details that can be
expected to differ for events of the same kind: IP adresses, FQDNs, email adresses, and numbers.
The event history goes back 12 minutes, and thus a report is triggered if the number of similar events
within the last 12 minutes exceeds a given threshold (default: 24).

This feature is off by default. In order to switch it on, you need to set a reporting queue:

LogmonBurstQueue=queue — Set the reporting queue for reporting bursts of similar log messages
(default: don’t report).

In addition, there are two more configurable parameters, one to set the triggering threshold (i.e. the
number of messages within 12 minutes that need to be exceeded to raise an alert), and another one to
indicate whether messages from the cron daemon should be considered as well (default: no):

LogmonBurstThreshold=number — The number of repeated messages within 12 minutes that
must be exceeded to report a burst of repeated messages (default: 24).

LogmonBurstCron=boolean — Whether to report also on bursts of repeated cron messages
(default: false).

5.16.4. Options

LogmonActive=boolean switches this module on or off (default: off).

81



Chapter 5. Configuring samhain, the host integrity monitor

LogmonSaveDir=/absolute/path sets the directory where checkpoint data for logfiles is stored
(default: same as for database file).

LogmonClean=boolean delete old checkpoint data unmodified for 30 days or more (default: off).

LogmonInterval=seconds sets the interval for logfile checking (default: 10 seconds).

LogmonMarkSeverity=severity — Severity for reports on missing heartbeat messages if the
messages themselves are assigned to the ’trash’ queue (default: crit).

LogmonBurstThreshold=number — The number of repeated messages within 12 minutes that
must be exceeded to report a burst of repeated messages (default: 24).

LogmonBurstQueue=queue — Set the reporting queue for reporting bursts of similar log messages
(default: don’t report).

LogmonBurstCron=boolean — Whether to report also on bursts of repeated cron messages
(defaul: false).

LogmonWatch=TYPE:path[:format] advises the module to monitor the logfile with the
specified path, which is of type ’TYPE’ (logfile types are uppercase). Some logfile types (e.g.
Apache access logs) can be customized, and hence some format information must be provided.
Currently (samhain 2.6.4) the following logfile types are supported

SYSLOG

Standard UNIX style syslog files. Matching starts at the command (i.e. after the hostname). To
select certain hostnames, place the rule under a LogmonHost directive (see below). If the
LogmonHidePID option is used, the RE should not account for the process PID.

APACHE

Apache (or compatible) webserver access and/or error logs. Required format information: either
one of combined, common, or error (error log), or the Apache custom log format
specification used. The whole log line is matched. If there are virtual hosts (%v), then the
LogmonHost directive will match the virtual host.

SAMBA

Samba logfile format (multiline, timestamp and origin within samba source code on first line,
log message on continuation lines). The RE will match the continuation line (with the log
message) only.

PACCT

BSD style process accounting (also available on Linux). This is a binary logfile. The module
will build a text line like the ’last’ command does, and match it against the RE.

82



Chapter 5. Configuring samhain, the host integrity monitor

What is pacct good for? Note that pacct records contain only the executable name, not the
arguments. This may look somewhat useless for shell accounts, but is quite useful for servers:
how many different commands can e.g. postfix legitimately execute? Just a handful, indeed, and
certainly none of them is /bin/sh! So if pacct says that the ’postfix’ user has executed a shell,
then this would be rather alarming...

SHELL

A shell command. The full output on stdout will be read and matched. The PATH environment
variable will be set to /sbin:/bin:/usr/sbin:/usr/bin:/usr/ucb, and the SHELL, IFS,
and TZ variables will be defined. The command is executed via /bin/sh -c command.

LogmonHidePID=boolean is an option that only affects logfiles of type SYSLOG. It causes the
PID to be stripped from the log line (before matching against the RE).

LogmonQueue=label:[interval]:(sum|report):severity[:alias] defines an output
queue. Here, label is an arbitrary name which is used to assign rules to this queue; interval is the
timespan over which messages are summarized if the queue is of type ’sum’; sum (summarize over
some interval) or report (report each event seperately and immediately) are the two queue type
supported, and severity is the severity assigned to an event. Furthermore, optionally it is possible to
specify an alias (must be defined in the email configuration) to direct email for this rule to a specific
list of recipients.

Email: If you spefify a list alias, email will still go to all defined email recipients unless filtered,
e.g. with

SetMailFilterNot = \[Logfile\]

I.e. you may want to define recipients, filter them as above, and then define list aliases to be
used in an event queue. See Section 4.4> for more information.

LogmonHost=(perl)regex causes the following rules to be applied only to entries for this
host(s). It is ended implicitely by another LogmonHost directive, or explicitely by a
LogmonEndHost directive.

LogmonEndHost explicitely ends a preceding LogmonHost directive.

LogmonGroup=(perl)regex causes the following rules to be applied only if the group regex
matches (i.e. rules within the group are skipped if the group regex doesn’t match. This can be used to
improve speed/efficiency of matching, i.e. you can group regexes by a common prefix. A group is
ended implicitely by another LogmonGroup directive, or explicitely by a LogmonEndGroup
directive.

83



Chapter 5. Configuring samhain, the host integrity monitor

LogmonEndGroup explicitely ends a preceding LogmonGroup directive.

LogmonRule=queue_label:(perl)regex matches a logfile entry against the provided regular
expression. If the expression matches, then captured subexpressions are replaced by ’___’, and the
logfile entry is reported as specified for the queue referenced by queue_label. Non-captured
subexpressions (i.e. subexpressions where the opening bracket is followed by ’?:’) are not replaced
by ’___’, but reported literally.

LogmonRule=KEEP(seconds,label):queue_label:(perl)regex as above, but additionally
keep the event label for seconds to perform event correlation.

LogmonRule=CORRELATE(description):queue_label:(perl)regex perform event
correlation by matching the labels (as specified in KEEP rules) of a sequence of events against the
given regular expression.

LogmonRule=MARK(seconds,description):queue_label:(perl)regex matches a logfile
entry against the provided regular expression, AND checks whether is occurs at least once within the
specified interval (seconds).

5.16.5. Example configuration
[Logmon]

#
# Switch on the module
#
LogmonActive = yes

# Check every second
#
LogmonInterval = 1

# Strip PIDs from syslog messages
#
Logmonhidepid = true

# Define a queue with severity ’crit’.
# This is a ’report’ queue, hence ’interval’ (10)
# will be ignored.
#
LogmonQueue = q1:10:report:crit

# Define a second queue with severity ’alert’
#
LogmonQueue = q2:10:report:alert

# Monitor /var/log/messages, which is a syslog file

84



Chapter 5. Configuring samhain, the host integrity monitor

#
LogmonWatch = SYSLOG:/var/log/messages

# Monitor /var/log/samba/log.nmbd, which is a samba
# logfile
#
LogmonWatch = SAMBA:/var/log/samba/log.nmbd

# Monitor /var/log/apache2/access.log, which is
# an Apache logfile in ’combined’ format
#
LogmonWatch = APACHE:/var/log/apache2/access.log:combined

# Monitor disks to check for full /dev/sda1
#
LogmonWatch = SHELL:df -h

# Syslog messages for the pppd deamon
#
LogmonGroup = g1:pppd.*
#
# Rules in this group
#
LogmonRule = q1:pppd:\s+primary.*
LogmonRule = q1:pppd:\s+secondary.*

#
LogmonEndGroup

# Warn about disk /dev/sda1 nearly full (80% or more. Use a
# non-capturing subexpression [the (?:8|9)] for the percentage full.
#
LogmonRule = q1:/dev/sda1\s+[0-9GM.]+\s+[0-9GM.]+\s+[0-9GM.]+\s+(?:8|9).%.*

# Messages starting with WARNING (some samba stuff)
#
LogmonGroup = g2:WARNING.*

LogmonRule = q2:.*interfaces.*
LogmonEndGroup

# Throw away all non-matching entries. This amounts
# to a blacklist policy (only report known bad).
#
# Usually considered bad practice!!! Use whitelisting!
#
# ’trash’ is a built in queue, no definition needed.
#
LogmonRule = trash:.*

85



Chapter 5. Configuring samhain, the host integrity monitor

5.17. Checking the Windows registry

32bit vs. 64bit views

On 64bit Windows, the same key name may get mapped to different keys,
depending on whether the lookup is done by a 32bit or 64bit application.
Currently samhain does not check the alternate view.

This option is available with samhain version 2.8.0 and higher, when compiled on Cygwin/Windows.
It enables samhain to verify the integrity of individual keys, or complete trees/hierarchies of keys, in
the Windows registry.

Be careful what you ask for: The Windows registry is huge, i.e. it may contain a huge amount
of keys, for which baseline data will get stored in the samhain baseline database if you desire to
monitor all of them. There is the potential to blow up the size of the baseline database in a quite
spectacular way.

5.17.1. Options

All options for this module go into the section [Registry].

RegistryCheckActive=boolean switches this module on or off (default: off).

RegistryCheckInterval=seconds defines the interval (in seconds) between consecutive checks.
The default is 300 seconds.

SeverityChange=severity defines the severity for reports on modifications to the registry.

SingleKey=key defines a key to be monitored (of course it is possible to use this command multiple
times). Valid key names must start with one of: HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, or HKEY_USERS. The Windows path
separator (’\’) must be used.

Hierarchy=key defines a key hierarchy in the registry, beginning at the specified key, to be
monitored (of course it is possible to use this command multiple times). Valid key names must start
with one of: HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,
or HKEY_USERS. The Windows path separator (’\’) must be used.

Escaping the path separator: The following two directives (StopAtKey, IgnoreKey) take a
(POSIX) regular expression as argument. This implies that the path separator must be escaped

86



Chapter 5. Configuring samhain, the host integrity monitor

by doubling it, i.e. you need to write ’\\’ instead of ’\’, because the ’\’ is a metacharacter in regular
expressions (see example below).

StopAtKey=regex means that the check of a hierarchy will stop at the specified key, i.e. nothing
below this key will be checked or monitored (but the key itself where the check stops will). It is
allowed to use a regular expression for the key. Valid key names must start with one of:
HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE, or
HKEY_USERS. The Windows path separator (’\’) must be used.

IgnoreKey=regex differs from the StopAtKey option only insofar as the key where the check stops
is not itself checked.

5.17.2. Example configuration
[Registry]

#
# Switch on the module
#
RegistryCheckActive = yes

# Check every 60 second
#
RegistryCheckInterval = 1

# Check this and everything below
#
Hierarchy = HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft

# Exclude this and anything below
# IgnoreKey and StopAtKey have a regex as argument, hence
# the path separator ’\’ must be escaped by doubling it.
#
IgnoreKey = HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion

# Check this key
#
SingleKey = HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\AFD\Parameters

87



Chapter 5. Configuring samhain, the host integrity monitor

5.18. Modules

samhain has a programming interface that allows to add modules written in C. Basically, for each
module a structure of type struct mod_type, as defined in sh_modules.h, must be added to the list
in sh_modules.c.

This structure contains pointers to initialization, timing, checking, and cleanup functions, as well as
information for parsing the configuration file.

For details, in the source code distribution check the files sh_modules.h, sh_modules.c, as well
as e.g. utmp.c, utmp.h, which implement a module to monitor login/logout events. There is also a
HOWTO written by eircom.net Computer Incident Response Team.

5.19. Performance tuning

File checking is basically I/O-limited, i.e. typically most of the time the application waits for data
from the disk. Most of the application runtime is spent in the checksum algorithm, but as the
application is I/O-limited, using a faster algorithm does not neccessarily result in any noticable speed
improvement.

Logging can be very expensive, so you should avoid enabling many different logging facilities. You
should also avoid low logging thresholds (info/debug) on production systems — it tends to drown
real problems in the noise of purely informational messages, and reduces performance quite
noticably.

Other things you can do are:

• Build a static binary (use the --enable-static switch for configure). Static binaries are faster, and
also more secure, because they cannot be subverted via libc.

Note: Unfortunately this is not possible on Solaris. This is not a bug in samhain, but is
because some functions in Solaris are only supplied by dynamic libraries.

• Change the compiler switches to optimize more aggressively.

• If on a commercial UNIX, check whether the native compiler produces faster code (you need an
ANSI C compiler). The ./configure script honours CC (compiler) and CFLAGS environment
variables.

88



Chapter 5. Configuring samhain, the host integrity monitor

On the other side, if you want to reduce the load caused by file checking, you can change the
scheduling priority (see man nice), and/or limit the I/O:

[Misc]
# low priority (positive argument means lower priority)
SetNiceLevel=19
# kilobytes per second
SetIOLimit=1000

If you want to avoid thrashing the file cache, you can tell samhain to drop checksummed files from
the cache (unless they were already cached). For performance reasons, this defaults to ’false’.

[Misc]
# drop checksummed files from cache
SetDropCache = True

Similarly, for the SUID check, you can limit the files per seconds:

[SuidCheck]
# limit on files per seconds
SuidCheckFps=250

5.20. Storing the full content of a file (aka: WHAT has
changed?)

Consider using a revision control system: One of the most frequently requested features is
the ability to determine what has changed in a file. This is not really within the scope of a file
integrity checker ; rather it would be the task of a revision control system like SVN (subversion) or
CVS.

While samhain, as of version 2.4.4, supports storing the full content of files in the baseline
database, this feature is limited to small files (smaller than 9200 bytes after zlib compression). If
you really think you need this feature, it is recommended to evaluate whether a revision control
system does not fit your needs better.

As of version 2.4.4, samhain can optionally store the full literal content of regular files in the
database, which allows to determine what has changed in a file. This feature will only get compiled

89



Chapter 5. Configuring samhain, the host integrity monitor

if the required zlib development environment is available on the host where samhain is compiled
(e.g. on Debian Linux, the package zlib1g-dev). This feature is subject to the following restrictions:

• Only small files can be stored, where ’small’ means less than 9200 bytes after zlib compression
(and less than 92000 bytes before compression, i.e. files 10 times larger than the limit are assumed
to not compress below the limit).

• Only regular files can be stored; in particular, symlinks are not stored, since the content of a
symlink inode actually is the target path (which is stored literally). It is safe to enable this for a
directory, in the sense that it is silently ignored for file types where it does not apply.

• The feature must be explicitely enabled in the runtime configuration file by adding the ’+TXT’ to
the monitoring policy of a file or directory.

To enable this feature, modify a policy to include ’TXT’, and place the desired files under this policy
(see example below).

In order to show the stored content of a file, use the following command:

sh$ samhain --list-file path -d database_path

5.20.1. Example configuration
[Misc]
#
# UserN policies default to ReadOnly + ATM (access time). This
# makes the default (intentionally ;-) more or less useless.
#
# Redefine to ReadOnly + TXT (store file content)
#
RedefUser0 = -ATM, +TXT

[User0]
#
# Files for which we want to store the full content in the
# baseline database.
#
file=/etc/passwd
file=/etc/group

90



Chapter 5. Configuring samhain, the host integrity monitor

5.20.2. Implementation details

File contents are zlib compressed (RFC 1950), and the compressed data are base64 encoded. To
avoid internal conflicts, samhain uses the letters ’(’, ’)’ and ’?’ instead of the letters ’+’, ’/’, and ’=’
used in standard base64 encoding. E.g. in PHP the following will decode the data:

$tmp1 = strtr($data, "()?", "+/=");
$tmp2 = base64_decode($tmp1);
$tmp3 = gzuncompress($tmp2);

91



Chapter 6. Configuring yule, the log server

yule is the log server within the samhain file integrity monitoring system. yule is part of the
distribution package. It is only required if you intend to use the client/server capability of the
samhain system for centralized logging to yule.

Important

Client and server are distict applications, and must be built seperately. By
default, installation names and paths (e.g. the configuration file) are different.
Do not blame us if you abuse ’./configure’ options to cause name clashes, if
you install both on the same host.

To compile yule, you must use ./configure --enable-network=server. To
compile a samhain client, you must use ./configure --enable-network=client.

6.1. General

yule is a non-forking server. Instead of forking a new process for each incoming logging request, it
multiplexes connections internally. Apart from samhain client reports (see below), yule (version
1.2.8+) can also collect syslog reports by listening on port 514/udp, if compiled with this option
enabled (see also man syslogd.

Each potential client must be registered with yule to make a connection (see Section 5.1> and the
example below). The client tells its host name to the server, and the server verifies it against the peer
of the connecting socket. On the first connection made by a client, an authentication protocol is
performed. This protocol provides mutual authentication of client and server, as well as a fresh
session key .

By default, all messages are encrypted using Rijndael (selected as the Advanced Encryption Standard
(AES) algorithm). The 192-bit key version of the algorithm is used. There is a compile-time option
to switch off encryption, if your local lawmakers don’t allow to use it (see Appendix).

yule keeps track of all clients and their session keys. As connections are dropped after successful
completion of message delivery, there is no limit on the total number of clients. There is, however, a
limit on the maximum number of simultaneous connections. This limit depends on the operating
system, but may be of order 1000.

Session key expire after two hours. If its session key is expired, the client is forced to repeat the
authentication protocol to set up a fresh session key.

92



Chapter 6. Configuring yule, the log server

Incoming messages are signed by the client. On receipt, yule will:

1. check the signature,

2. accept the message if the signature can be verified, otherwise discard it and issue an error
message,

3. discard the clients signature,

4. log the message, and the client’s hostname, to the console and the log file, and

5. add its own signature to the log file entry.

6.2. Important installation notes

As of version 1.7.0, yule will always drop root privileges after startup and initialization. You can use
a privileged port (port number below 1024), because setting up the listening socket will occur as
long as yule still has root privileges.

There are some special considerations that need to be taken into account when setting up an
installation of yule. In particular:

The unprivileged user

By default, configure will check (in this order) for the existance of a user yule, daemon, or
nobody, and use the first match.

You can override this with the option configure --enable-identity=user. The user does not
need to exist already; the install script knows how to create a new user (on Linux, FreeBSD,
NetBSD, Solaris, HP-UX, OSF1).

After successful installation, you will be asked to run make install-user in order to: (i) create
the user that you specified to configure if it does not exist already (make install-user will
check for this), and (ii) chown/chmod some directories.

After running make install and make install-user, you should have a sane setup.

Logfile directory

The system logfile directory usually requires root privileges to write there (otherwise log files
may easily get corrupted ...). To enable yule to write the log file and the HTML status file, a
(sub-)directory should be used that is owned by yule. The configure script and the Makefile will
do that automatically with the default layout (i.e. a directory /var/log/yule will be created).

93



Chapter 6. Configuring yule, the log server

Data files

The data file directory is now owned by root and world readable by default. If you chown it to a
suitable group for the unprivileged yule user, you can make it group readable only. Note that it
is not required, and weakens the security, if the data file directory is writeable for the server.

GnuPG signed configuration file

The unprivileged yule user must have a .gnupg subdirectory in its home directory, holding the
public keyring with the key to verify the signature.

PID file

The PID file is written with before dropping root privileges. Therefore yule will not be able to
overwrite it later (which is a GoodThing), or remove it upon exit (it will usually be able to
recognize and handle a stale PID file on startup). Still, it may be a good idea to remove it after
stopping yule. The provided start/stop scripts for various architectures will handle this.

6.3. Registering a client

Clients must be registered with yule to make a connection. Connection attempts by unknown clients
will be rejected. The respective section in the server configuration file looks like:

[Clients]
#
# A client
#
Client=HOSTNAME_CLIENT1@salt1@verifier1
#
# another one
#
Client=HOSTNAME_CLIENT2@salt2@verifier2
#

These entries have to be computed in the following way:

1. Choose a password (16 chars hexadecimal, i.e. only 0 -- 9, a -- f, A -- F allowed. To generate a
random password, you may use:

sh$ yule --gen-password

2. Use the program samhain_setpwd to reset the password in the compiled client binary (that is,
samhain, not yule) to the one you have chosen. samhain_setpwd takes three arguments: (1) the
binary name, (2) an extension to append to the new binary, and (3) the password. It will read the
executable binary (argument 1), insert the password (argument 3), and write a modified binary
with the specified extension (argument 2). Run samhain_setpwd without arguments for usage
information. Example:

94



Chapter 6. Configuring yule, the log server

sh$ samhain_setpwd samhain EXT 0123456789ABCDEF

3. Use the server’s convenience function ’-P’ to create a registration entry. Example:

sh$ yule -P 0123456789ABCDEF

4. The output will look like:

Client=HOSTNAME@salt@verifier

You now have to replace HOSTNAME with the fully qualified domain name of the host on
which the client should run (exception: if the server cannot determine the fully qualified
hostname, you may need to use the numerical address instead. You will see the problem in a
’Connection refused’ message from the server).

5. Put the registration entry into the servers’s configuration file, under the section heading [Clients]
(see Section 6.3>). You need to send SIGHUP to the server for the new entry to take effect.

6. Repeat steps (1) -- (5) for any number of clients you need (actually, you need a registration entry
for each client’s host, but you don’t neccesarily need different passwords for each client. I.e. you
may skip steps (1) -- (3)).

If you have a default directory layout, a [Clients] section right at the end of the server config file, and
your client is client.mydomain.com, then you could e.g. do:

bash$ PASSWD=‘yule --gen-password‘

bash$ samhain_setpwd samhain new $PASSWD

bash$ scp samhain.new root@client.mydomain.com:/usr/local/sbin/samhain

bash$ ENTRY=‘yule -P $PASSWD | sed s%HOSTNAME%client.mydomain.com%‘

bash$ echo $ENTRY >> /etc/yulerc

bash$ kill -HUP ‘cat /var/run/yule.pid‘

6.4. Enabling logging to the server

If the client is properly registered with the server, all you need to do is to set an appropriate threshold
for remote logging in the client’s configuration file, and give the IP address of the server (if not
already compiled in). Of course, the client must be compiled with the --enable-network=client
switch.

Example for client configuration:

95



Chapter 6. Configuring yule, the log server

[Log]
#
# Threshold for forwarding to the log server
#
ExportSeverity=crit

[Misc]

SetLogServer=IP address

Example for server configuration:

[Clients]
#
# Register a client to allow it to connect
#
Client=client.mydomain.com@salt@verifier

6.5. Enabling baseline database / configuration file
download from the server

A significant advantage of samhain is the option to store baseline databases and configuration files
on the central log server (yule), from where they can be downloaded by clients upons startup. In
order to use this option, clients must be configured to retrieve these files from the server rather than
from the local filesystem.

Tip: Obviously, retrieving the configuration file from the log server requires that the IP address of
the log server is compiled in, using the option ./configure --with-logserver=HOST.

Downloaded files are written to a temporary file that is created in the home directory of the effective
user (usually root. The filename is chosen at random, the file is opened for writing after checking
that it does not exist already, and immediately thereafter unlinked. Thus the name of the file will be
deleted from the filesystem, but the file itself will remain in existence until the file descriptor
referring it is closed (see man unlink), or the process exits (on exit, all open file descriptors
belonging to the process are closed).

6.5.1. Configuration file

If the compiled-in path to the configuration file begins with the special value
“REQ_FROM_SERVER”, the client will request to download the configuration file from yule (i.e.
from the server).

96



Chapter 6. Configuring yule, the log server

If “REQ_FROM_SERVER” is followed by a path, the client will use the path following
“REQ_FROM_SERVER” as a fallback if (and only if ) it is initializing the database. This is a
convenience feature to allow initializing the database(s) before the client is registered with the server.

Example: ./configure --with-config-file=REQ_FROM_SERVER/etc/conf.samhain In this case,
the client will request to download the configuration file from the server. If the connection to the
server fails, it will exit on error if run in ’check’ mode, but fallback to /etc/conf.samhain as its
configuration file, if run in ’init’ mode.

Note: For obvious security reasons, the client cannot specify the path to the configuration file on
the server side. The server will lookup the configuration file using only the hostname of the client
and the compiled-in path for the ’localstatedir’ (see below). The default for ’localstatedir’ is /var.

The server will search for the configuration file to send in the following order of priority (paths are
explained in Section A.5>). CLIENTNAME is the hostname of the client’s host, as listed in the
server’s config file in the Clients section:

1. localstatedir/lib/yule/rc.CLIENTNAME

2. localstatedir/lib/yule/rc

6.5.2. Database file

If the compiled-in path to the database file begins with the special value “REQ_FROM_SERVER”,
the client will request to download the database file from yule (i.e. from the server).

CAVEAT

“REQ_FROM_SERVER” must be followed by a path that will be used for
writing the database file when initializing. Upon initialization, the database is
always written to a local file, and must be copied with scp to the server (the
client cannot upload the database file to the server, as this would open a
security hole).

Example: --with-data-file=REQ_FROM_SERVER/var/lib/samhain/data.samhain In this case,
the client will request to download the database file from the server if checking, and will create a
local database file /var/lib/samhain/data.samhain if initializing. You have to use scp to copy
the file signature database to the server then.

97



Chapter 6. Configuring yule, the log server

Note: For obvious security reasons, the client cannot specify the path to the database file on the
server side. The server will lookup the databse file using only the hostname of the client and the
compiled-in path for the ’localstatedir’ (see below). The default for ’localstatedir’ is /var.

The server will search for the database file to send in the following order of priority (see Section
A.5>). CLIENTNAME is the hostname of the client’s host, as listed in the server’s config file in the
Clients section:

1. localstatedir/lib/yule/file.CLIENTNAME

2. localstatedir/lib/yule/file

6.6. Rules for logging of client messages

As the log server may receive quite a large number of log messages from clients (depending on the
number of clients and their threshold settings), client messages are treated specially and by default
are only logged to facilities suitable for bulk logging: console, log file, relational database (if
enabled), and external (if enabled).

To override this behavior, you can set the option UseClientSeverity=yes in the [Misc] section of the
configuration file. In that case, the client message severity is used, and client messages are treated
just like local messages (i.e. like those from the server itself).

If you also want to filter by message class, there is also an option UseClientClass=yes

All client messages are recorded in the main log file by default. However, it is possible to use
separate log files for individual clients. This can be enabled with UseSeparateLogs=yes/no in the
Misc section of the server configuration file. No locking will be performed for such separate client
log files (only one instance of the server can listen on the TCP port, thus there will be no concurrent
access).

6.7. Detecting ’dead’ clients

It is possible to set a time limit for the maximum time between two consecutive messages of a client
(option SetClientTimeLimit in the [Misc] section of the configuration file). If the time limit is
exceeded without a message from the client, the server will issue a warning. The default is 86400
seconds (one day); specifying a value of 0 will switch off this option.

98



Chapter 6. Configuring yule, the log server

You may want to set ExportSeverity = mark (or any lower threshold) in the client configuration file
in order to log timestamp (’heartbeat’) messages to the server.

6.8. The HTML server status page

yule writes the current status to a HTML file. The default name of this file is samhain.html, and by
default it is placed in /var/log.

The file contains a header with the current status of the server (starting time, current time, open
connections, total connections since start), and a table that lists the status of all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive

The client has not connected since server startup.

Started

The client has started. This message may be missing if the client was already running at server
startup.

Exited

The client has exited.

Message

The client has sent a message.

File transfer

The client has fetched a file from the server.

ILLEGAL

Startup without prior exit. May indicate a preceding abnormal termination.

PANIC

The client has encountered a fatal error condition.

FAILED

An unsuccessful attempt to set up a session key or transfer a message.

POLICY

The client has discovered a policy violation.

99



Chapter 6. Configuring yule, the log server

TIME_EXCEEDED

No message (e.g. timestamp) has been received from the client for a defined amount of time
(default 1 day, option SetClientTimeLimit).

For each client, the latest event of each given type is listed. Events are sorted by time. Events that
have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table entry, and (iii) the file end.
Templates must be named head.html, entry.html, and foot.html, respectively, and must be
located in the data directory (i.e. localstatedir/lib/yule/, see Section A.5>). The distribution
package includes two sample files head.html and foot.html.

The following replacements will be made in the head template:

Placeholder Significance
%T Current time.

%S Startup time.

%L Time of last connection.

%O Open connections.

%A Total connections since startup.

%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

Placeholder Significance
%H Host name.

%S Event.

%T Time of event.

Tip: A literal ’%’ in the HTML output must be represented by a ’% ’ (’%’ followed by space) in the
template.

6.9. Chroot

As of version 1.7.0, yuleis able to chroot itself after startup and initialization, either by using the
command line option

bash$ yule --chroot=/chrootdir

100



Chapter 6. Configuring yule, the log server

or by requesting it in the configuration file:

[Misc]
SetChrootDir=path

In order to prepare for the chroot jail, the following is required:

Tip: In the scripts subdirectory of the source directory there is a script chroot.sh to perform
steps (4) and (5) (only for Linux).

1. Compile normally. Make sure you use either dev/random (default if existing) or EGD (Entropy
Gathering Daemon) for the entropy device. If dev/random does not exist, the default is the
’standard unix entropy gatherer’, which uses the output of many system commands, and
therefore is not suitable within a chroot jail.

2. Install with the command(s):

bash$ make DESTDIR=/chrootdir install

bash$ make DESTDIR=/chrootdir install-user

bash$ make install-boot

3. Fix the path to the yule binary in the runlevel start/stop script installed by the last command.

4. Prepare the chroot environment. Basically, you need under /chrootdir

(a) an entropy device, either dev/random, dev/urandom, or an EGD (Entropy Gathering
Daemon) socket,

(b) minimum etc/passwd, etc/group files, at least with entries for root and the unprivileged
yule user. Replace passwords with an asterix, and make sure the homedirectory of the
unprivileged yule user is correct within the chroot jail.

(c) files required for DNS: etc/nsswitch.conf, etc/hosts, etc/host.conf,
etc/resolv.conf, etc/services, etc/protocols.

5. Create a symlink /etc/yulerc to /chrootdir/etc/yulerc (no, it will not work the other
way round).

Because yule chroots after startup, there is no need to copy shared libraries into the chroot jail. They
will be loaded upon startup, before the chroot() occurs.

101



Chapter 6. Configuring yule, the log server

Tip: If you are using syslog logging, you need a dev/log socket in the chroot jail. Modern syslog
incarnations will allow you to have an additional socket using the command:

bash$ syslogd -a /chrootdir/dev/log

Tip: If you are using a GnuPG-signed configuration, you will need a working copy of gpg in the
chroot jail.

6.10. Restrict access with libwrap (tcp wrappers)

As of version 1.8.0, yule can be build with support for libwrap, i.e. Wietse Venema’s tcp wrappers
libraries. To enable this, use the configure option --with-libwrap.

You can then restrict access to yule with appropriate entries in the /etc/hosts.allow and/or
/etc/hosts.deny files.

Note: If you use the configure option --enable-install-name=NAME , then yule will be installed
as ’NAME’, and this is what you then need to use as the daemons name in the
/etc/hosts.allow and/or /etc/hosts.deny files.

6.11. Sending commands to clients

It is generally not possible to send commands to clients, because the client does not listen on the
network (the client needs root privileges to perform its tasks, and you don’t want a root network
daemon).

However, it is possible to send a command if and when a client connects to deliver a message. As of
version 1.8.0, clients use a new version of the client/server protocol, which includes a set of
pre-defined commands that are understood by the client. Currently implemented are RELOAD to
reload the configuration, SCAN to request a file system check (ouside the regular schedule), and
STOP to terminate the client.

Pre-1.8.0 clients, or clients build with the (optional) old protocol version, will simply ignore such
commands.

102



Chapter 6. Configuring yule, the log server

6.11.1. Communicating with the server

As of version 1.8.0, yule can send a command to a client if and when a client connects to deliver a
message, e.g. a timestamp message (clients are not listening on the network, and thus commands can
only be sent together with the confirmation when a message is received).

Of course the server needs to know which (if any) command to send. Therefore it can open a unix
domain socket upon startup (in the same directory as the PID file). Opening this command interface
must be requested explicitely with the option SetUseSocket=yes (in the [Misc] section).

A separate application yulectl is compiled together with the server that provides a command-line
interface to access this facility. Use yulectl -h for help.

6.11.2. Authenticating to the server

There are two methods to authenticate to the server. If supported by the OS, authentication is done
by passing the credentials of the socket peer to the server (this is a special feature of unix domain
sockets), and requiring the UID of the the socket peer (i.e. the user using the yulectl program) to
match a UID as set with the SetSocketAllowUid=UID option (default is 0, i.e. only root can use the
interface).

Note: If passing credentials over the socket is supported by the OS, it is not possible to fake
these credentials - they are supplied by the kernel. Therefore, the server can rely on the fact that
the user process writing to the socket has indeed the UID passed via the socket. Thus, the
access rights to the socket are basically not important (on some systems, they are not even
recognized/respected at all).

As of version 1.8.12, if (and only if) passing credentials over the socket is not supported, you can
specify a password with the SetSocketPassword=password option. The password must be 14
characters or less, and must not include the ’@’ character.

Of course you must supply the password to yulectl if you want to communicate with the server. To
do so, create a file .yulectl_cred in your home directory, and place the password there.

Note: Password authentication is not supported if the OS supports the aforementioned method.
You can use yule -v to find out which of the two authentication methods is supported.

103



Chapter 6. Configuring yule, the log server

6.12. Syslog logging

yule (version 1.2.8+) can listen on port 514/udp to collect reports from syslog clients. This must be
enabled by using the --enable-udp configure option when compiling. In addition, in the Misc section
of the configuration file, you must set the option SetUDPActive=yes.

This option requires to run yule either as root, or as SUID root. For security, yule will drop root
privileges irrevocably immediately after binding to port 514/udp. It will assume the credentials of
some compiled-in user. The default is ’yule’, ’daemon’, or ’nobody’ (i.e. the first of these that exists
on your system). You can override this with the --enable-identity=USER option. Note that each
daemon should have its own user/group, such that an exploit will not give write access to files owned
by other daemons.

6.13. Server-to-server relay

As of version 2.2.0, it is possible to relay messages from one yule server to another. This is
implemented in the same way as client-to-server connectivity, i.e. the relaying server and the
endpoint server must be set up in the same way as a samhain client and a server, respectively (see
Section 6.3>).

6.14. Performance tuning

If connections time out because of slow network, you can raise the timeout with
SetConnectionTimeout=seconds (the default is 900 seconds).

Even without tweaking, the server can probably handle some 100 connections per second on a
500Mhz i686. Depending on the verbosity of the logging that you wish, this should suffice even for
some thousand clients.

Almost all time is spent (i) in the HMAC function that computes the message signatures, and (ii) if
you do not have the gmp (GNU MP) multiple precision library, in the multiple precision arithmetic
library (for SRP authentication).

The reason for (ii) is that samhain/yule will use a simple, portable, but not very efficient MP library
that is included in the source code, if gmp is not present on your system.

To improve performance, you can:

104



Chapter 6. Configuring yule, the log server

• install gmp, remove the file config.cache in the source directory (if you have run configure
before), and then run configure and make again. The configure script should automatically detect
the gmp library and link against it.

• use a simple keyed hash (HASH-TIGER), which will compute signatures as HASH(message key)
instead of the HMAC (HMAC-TIGER). This will save two of the three hash computations
required for a HMAC signature.

CAVEAT

Make sure you use the same signature type on server and client !

[Misc]
#
# use simple keyed hash for message signatures
# Make sure you set this both for client and server
#
MACType=HASH-TIGER

• build a static binary (use the --enable-static switch for configure). Static binaries are faster, and
also more secure, because they cannot be subverted via libc.

Note: Unfortunately this is not possible on Solaris. This is not a bug in samhain, but is
because some functions in Solaris are only supplied by dynamic libraries.

• change the compiler switches to optimize more aggressively.

• if on a commercial UNIX, check whether the native compiler produces faster code than gcc (you
need an ANSI C compiler). The configure script honours CC (compiler) and CFLAGS
environment variables.

105



Chapter 7. Hooks for External Programs

samhain provides several hooks for external programs for (re-)processing the audit trail, including
pipes, a System V message queue, and the option to call external programs.

7.1. Pipes

It is possible to use named pipes as ’console’ device(s) (samhain supports up to two console devices,
both of which may be named pipes. You can set the device path at compile time (see Section A.5>),
and/or in the configuration file (see Section 4.8>).

7.2. System V message queue

It is possible to have a SystemV IPC message queue (which is definitely more elegant than named
pipes) as additional ’console’ device. You need to compile with --enable-message-queue=MODE and
use the option MessageQueueActive=T/F.

The default mode is 0700 (rwx------), but this is a compile option (message queues are
kernel-resident, but have access permissions like files). To get the System V IPC key for the message
queue, use ftok("/tmp", ’#’); (man ftok, man msgctl, man msgrcv). Note that not all systems
support SysV IPC.

Tip: There is a demo application (a GNOME panel applet) available on the download site that
uses the message queue.

7.3. Calling external programs

samhain may invoke external programs or scripts in order to implement logging capabilities that are
not supported by samhain itself (e.g. pager support). This section provides an overview of this
capability.

External programs/scripts invoked for logging will receive the formatted log message on stdin. The
program should expect that stdout and stderr are closed, and that the working directory is the root
directory.

106



Chapter 7. Hooks for External Programs

Each external program must be defined in the configuration file, in a section starting with the header
[External]. In addition, ExternalSeverity must be set to an appropriate threshold in the section
[Log].

Each program definition starts with the line

OpenCommand=/full/path

Options for the program may follow. The definition of an external program is ended (a) when
explicitely terminated with the line CloseCommand, (b) when the section ends, or (c) when another
OpenCommand=/full/path line for the next command is encountered.

Environment variables: By default, the environment is limited to the TZ (timezone) variable. If
you need other variables (e.g. LD_LIBRARY_PATH), you can set them using the
Setenviron=KEY=value option (see below).

• There are several places in samhain where external programs may be called. Each such place is
identified by a type. Currently, valid types are:

• log — An external logging facility, which is handled like other logging facilities. The program
will receive the logged message on stdin, followed by a newline, followed by the string [EOF]
and another newline.

• srv — Executed by the server, whenever the status of a client, as displayed in the HTML status
table, has changed. The program will receive the client hostname, the timestamp, and the new
status, followed by a newline, followed by [EOF] and another newline.

• Any number of external programs may be defined in the configuration file. Each external program
has a type, which is log by default. Whenever external programs are called, all programs of the
appropriate type are executed. The type can be set with SetType=type

• External programs must be on a trusted path (see Section 2.10.1>), i.e. must not be writeable by
untrusted users.

• For enhanced security, the (192-bit TIGER) checksum of the external program/script may be
specified in the configuration file: SetChecksum=checksum (one string, no blanks in checksum)

• Command line arguments and environment variables for each external program are configurable
(the default is no command line arguments, and a clean environment containing only the TZ
(timezone) variable:

107



Chapter 7. Hooks for External Programs

SetCommandline=full_command_line (full command line starting with the name of the
program)

Setenviron=KEY=value

• The user whose credentials shall be used, can be specified: SetCredentials=username

• Some filters are available to make the execution of an external program dependent on the message
content:

SetFilterNot=list If any regular expression in ’list’ matches the message, the program is not
executed, else

SetFilterAnd=list if any regular expression in ’list’ is not matching the message, the program is
not executed, else

SetFilterOr=list if none of the regular expressions in ’list’ matches the message, the program is
not executed.

For all filters, list items can be quoted with single or double quotes. It is also possible to use each
filter option multiple times, although this does not affect the order (not, and, or) in which filters
are evaluated. A maximum of 32 filter patterns for each of (not, and. or) are supported per defined
external program. Any filter not defined is not evaluated.

• It is possible to set a ’deadtime’. Within that ’deadtime’, the respective external program will be
executed only once (if triggered): SetDeadtime=seconds

7.3.1. Example setup for paging

The distribution contains two example perl scripts for paging and SMS messages (example_pager.pl,
example_sms.pl). The paging script will page via a web CGI script at www.pagemart.com
(obviously will work only for their pagers), the SMS script is for any German ’free SMS’ web site
that outsources free SMS to pitcom (with a suitable query on Google you can find such sites; you can
then inspect the HTML form to set proper values for the required form variables.)

If you know some Perl, both scripts can be adapted fairly easily to other providers. Below is an
example setup for calling example_pager.pl as an external logging facility.

[External]
# start definition of first external program
OpenCommand=/usr/local/bin/example_pager.pl
SetType=log

108



Chapter 7. Hooks for External Programs

# arguments
SetCommandline=example_pager.pl pager_id
# environment
SetEnviron=HOME=/home/moses
SetEnviron=PATH=/bin:/usr/bin:/usr/local/bin
# checksum
SetChecksum=FCBD3377B65F92F1701AFEEF3B5E8A80ED4936FD0D172C84
# credentials
SetCredentials=moses
# filter
SetFilterOr=POLICY
# deadtime
SetDeadtime=3600

#Optional
CloseCommand

109



Chapter 8. Additional Features — Signed
Configuration/Database Files

Both the configuration file (see Section C.1>) and the database of file signatures (Section 5.8>) may
always be cleartext signed by GnuGP (gpg). The recommended options are:

gpg -a --clearsign --not-dash-escaped FILE

If compiled with support for signatures, samhain will invoke gpg to verify the signature. To compile
with gpg support, use the option:

./configure --with-gpg=/full/path/to/gpg [--with-keyid=0x<hex KeyID>]

• The optional argument --with-keyid=0x<hex KeyID> allows to specify a key ID, if there is
more than one key in your keyring. This is only used for the installation routine, and for
configuring the samhainadmin.pl convenience script (see below).

• samhain will check that the path to the gpg executable is writeable only by trusted users (see
Section 2.10.1>).

• The program will be called without using the shell, with its full path (as compiled in), and with an
environment that is limited to the HOME variable.

• The public key must be in in the subdirectory HOME/.gnupg, where HOME is the home directory
of the effective user (usually root).

• From the command line, the signature must verify correctly with /path/to/gpg --status-fd 1
--verify FILE when invoked by the effective user of samhain (usually root).

Tip: There is a Perl script samhainadmin.pl to facilitate some tasks related to the administration
of signed configuration and database files (see Section 8.1>).

110



Chapter 8. Additional Features — Signed Configuration/Database Files

Caveats

When signing, the option --not-dash-escaped is recommended, because
otherwise the database might get corrupted. However, this implies that after a
database update, you must remove the old signature first, before re-signing
the database. Without ’dash escaping’, gpg will not properly handle the old
signature. See the tip just above.

The environment is limited to the HOME variable, since gpg may need it to find
the the subdirectory HOME/.gnupg. If you need LD_LIBRARY_PATH, because
your gpg executable relies on libraries that are not in the search path of the
loader, you can either (i) use a wrapper script to set the environment and exec
gpg (take care not to mess with file descriptors), (ii) update the system loader
configuration file, or (iii) recompile with loader paths (-Wl,-r<path> or
-Wl,-R<path>).

As signatures on files are only useful as long as you can trust the gpg executable, the configure
script will determine the TIGER192 checksum of the gpg executable, which will be compiled into
samhain. In case of an error, you can specify the checksum by hand with:

--with-checksum="CHECKSUM" — or — --without-checksum

CHECKSUM should be the checksum as printed by

gpg --load-extension tiger --print-md TIGER192 /path/to/gpg — or — samhain -H
/path/to/gpg (the full line of output, with spaces).

Example: --with-checksum="/usr/bin/gpg: 1C739B6A F768C949 FABEF313 5F0B37F5
22ED4A27 60D59664"

WARNING

Compiling in the GnuPG checksum will tie the samhain executable to the gpg
executable. If you upgrade GnuPG, you will need to re-compile samhain. If you
don’t like this, use ’--with-checksum=no’ (or ’--without-checksum’, which is
equivalent).

Likewise, it is highly recommended to compile in the key fingerprint of the signature key, which then
will be verified after checking the signature itself:

--with-fp=FINGERPRINT

111



Chapter 8. Additional Features — Signed Configuration/Database Files

Note: gpg --fingerprint will only list the fingerprint of primary keys. If you are signing with a
secondary key, you need to repeat the ’--fingerprint’ option (i.e. run gpg gpg --fingerprint
--fingerprint) in order to obtain the fingerprint for the signing (secondary) key. (If you don’t know
what a secondary key is, then this note is probably irrelevant for you.)

Example (spaces in FINGERPRINT do not matter): --with-fp="EF6C EF54 701A 0AFD B86A
F4C3 1AAD 26C8 0F57 1F6C"

Tip: make install will gpg sign the configuration file before installation.

bash$ ./configure --with-gpg=/usr/bin/gpg --with-fp=EF6CEF54701A0AFDB86AF4C31AAD26C80F571F6C

bash$ make

bash$ su

bash$ make install

bash$ samhain -t init

bash$ gpg -a --clearsign /var/lib/samhain/samhain_file

bash$ mv /var/lib/samhain/samhain_file.asc /var/lib/samhain/samhain_file

samhain will report the signature key owner and the key fingerprint as obtained from gpg. If both
files are present and checked (i.e. when checking files against the database), both must be signed
with the same key. If the verification is successful, samhain will only report the signature on the
configuration file. If the verification fails, or the key for the configuration file is different from that of
the database file, an error message will result.

8.1. The samhainadmin script

In the subdirectory scripts/ of the source directory you will find a Perl script samhainadmin.pl
to facilitate some tasks related to the administration of signed configuration and database files (e.g.
examine/create/remove signatures). By default, this script is not installed.

bash$ samhainadmin.pl --help

samhainadmin.pl { -m F | --create-cfgfile } [options] [in.cfgfile]
Sign the configuration file. If in.cfgfile is given, sign it
and install it as configuration file.

samhainadmin.pl { -m f | --print-cfgfile } [options]
Print the configuration file to stdout. Signatures are removed.

samhainadmin.pl { -m D | --create-datafile } [options] [in.datafile]
Sign the database file. If in.datafile is given, sign it
and install it as database file.

samhainadmin.pl { -m d | --print-datafile } [options]
Print the database file to stdout. Signatures are removed. Use
option --list to list files in database rather than printing the raw file.

112



Chapter 8. Additional Features — Signed Configuration/Database Files

samhainadmin.pl { -m R | --remove-signature } [options] file1 [file2 ...]
Remove cleartext signature from input file(s). The file
is replaced by the non-signed file.

samhainadmin.pl { -m E | --sign } [options] file1 [file2 ...]
Sign file(s) with a cleartext signature. The file
is replaced by the signed file.

samhainadmin.pl { -m e | --examine } [options] file1 [file2 ...]
Report signature status of file(s).

samhainadmin.pl { -m G | --generate-keys } [options]
Generate a PGP keypair to use for signing.

Options:
-c cfgfile --cfgfile cfgfile
Select an alternate configuration file.

-d datafile --datafile datafile
Select an alternate database file.

-p passphrase --passphrase passphrase
Set the passphrase for gpg. By default, gpg will ask.

-l --list
List the files in database rather than printing the raw file.

-v --verbose
Verbose output.

113



Chapter 9. Additional Features — Stealth

If an intruder does not know that samhain is running, s/he will make no attempt to subvert it. Hence,
you may consider to run samhain in stealth mode, using some of the options discussed in this section.

9.1. Hiding the executable

samhain may be compiled with support for a stealth mode of operation, meaning that the program
can be run without any obvious trace of its presence on disk. The following compile-time options are
provided:

--enable-stealth=xor_val provides the following measures:

1. All embedded strings are obfuscated by XORing them with some value xor_val chosen at
compile time. The allowed range for xor_val is 128 to 255.

2. The messages in the log file are obfuscated by XORing them with xor_val. The built-in routine
for validating the log file (samhain -L /path/to/logfile) will handle this transparently. You may
specify as path an already existing binary file (e.g. an executable, or a JPEG image), to which
the log will get appended.

Tip: Use samhain -jL /path/to/logfile if you just want to view rather than verify the logfile.

3. Strings in the database file are obfuscated by XORing them with xor_val. You may append the
database file to some binary file (e.g. an executable, or a JPEG image), if you like.

4. The configuration file must be steganographically hidden in a postscript image file (the image
data must be uncompressed). To create such a file from an existing image, you may use e.g. the
program convert, which is part of the ImageMagick package, such as convert +compress
ima.jpg ima.ps.

Tip: make install will do this automatically before installation.

To hide/extract the configuration data within/from the postscript file, a utility program
samhain_stealth is provided. Use it without options to get help.

Note: If --enable-stealth is used together with --with-gpg, then the config file must be
signed before hiding it (rather than signing the PS image file afterwards).

114



Chapter 9. Additional Features — Stealth

--enable-micro-stealth=xor_val is like --enable-stealth, but uses a ’normal’ configuration file
(not hidden steganographically).

--enable-nocl[=ARG] will disables command line parsing. The optional argument is a ’magic’ word
that will enable reading command-line arguments from stdin. If the first command-line argument is
not the ’magic’ word, all command line arguments will be ignored. This allows to start the program
with completely arbitrary command-line arguments.

--enable-install-name=NAME will rename every installed file from samhain to NAME when doing a
make install (standalone/client installation), and likewise rename installed files from yule to NAME
when doing a make install (server installation). Also, the boot scripts will be updated accordingly.
Files created by samhain (e.g. the database) will also have samhain replaced by NAME in their
filenames.

Tip: The man pages have far too much specific information enabling an intruder to infer the
presence of samhain. There is no point in changing samhain to NAME there — this would rather
help an intruder to find out what NAME is. You probably want to avoid installing man8/samhain.8
and man5/samhainrc.5.

9.1.1. Using kernel modules to hide samhain (Linux/ix86
only)

Important: These modules modify the running kernel. Please read this section carefully (in
particular the caveats noted at the end), and test the modules before installing. Without proper
testing it may happen that you need to reboot into single user mode to remove the modules and
to make your system useable again ...

If the configure option --enable-khide=SYSTEM_MAP is used, two (pre-2.6 kernel) or one (2.6
kernel) loadable kernel module(s) will be built. These are named samhain_hide.o /

samhain_erase.o (pre-2.6) or samhain_hide.ko (2.6).

SYSTEM_MAP must be the path to the System.map file for your current kernel (e.g.
/boot/System.map-rh-2.4.18-3). samhain_hide.o will hide every file/directory/process
with the string NAME (from the configure option --enable-install-name=NAME). If the configure
option --enable-install-name is not used, NAME is set to samhain. To hide the module itself, the
second module samhain_erase.o is provided. Loading and immediately thereafter unloading this
module will hide any module with the string NAME in its name. make install will install the kernel
modules to the appropriate place. They will be loaded when booting into runlevel 2, 3, 4, or 5.

115



Chapter 9. Additional Features — Stealth

With 2.6 kernels, only one kernel module samhain_hide.ko will be build. This module is
self-hiding, i.e. the separate samhain_erase module is not needed anymore. Otherwise it works as
described above. Self-hiding can be switched off by passing the option ’removeme=0’ to the module:
insmod ./samhain_hide.ko removeme=0

Building a linux kernel module requires a proper build environment. You should have a link
/lib/modules/‘uname -r‘/build which points to a functional build environment. Usually, you
need to install the kernel sources for your kernel, and eventually (if compiling the modules fails) you
may need to configure the kernel source for your kernel:

sh$ cd /your/kernel/source/directory

sh$ make mrproper

sh$ make cloneconfig

sh$ make dep (obsolete for 2.6)
sh$ make modules (only for 2.6)
sh$ cd /lib/modules/‘uname -r‘

sh$ ln -s /your/kernel/source/directory build

Caveat no. 1

The hiding module will hide any process or file containing the name of the
samhain executable. This implies that an intruder can hide herself if she can
guess that name. You are strongly encouraged to use the ./configure option
--enable-install-name=NAME to change the executable name to something
really difficult to guess.

Caveat no. 2

The modules are kernel-specific, and must be recompiled whenever the
currently used kernel is recompiled or replaced by another one (even if the
kernel version is identical). Failure to do so might lead to a kernel panic. The
same is true if the System.map that you have specified at build time is not the
one corresponding to your current kernel.

Caveat no. 3

When the samhain_hide module is hidden, the kernel doesn’t know anymore
about its existence, thus it cannot be removed except by rebooting. On pre-2.6
kernels, hiding the samhain_hide.o module requires loading/unloading the
samhain_erase.o module. On 2.6 kernels, the samhain_hide.ko module will
automatically hide itself after loading, except if you pass the option
’removeme=0’ to the module: insmod ./samhain_hide.ko removeme=0

116



Chapter 9. Additional Features — Stealth

Caveat no. 4 - Important Linux 2.6 issue

The stealth module builds fine on Linux 2.6 (if the build system is properly
configured — see above). It was tested on two systems: 2.6.5-7.104-smp
(SuSE 9.1) and 2.6.6 (no SMP). It only worked on the latter system, while the
first one was rendered unuseable (ls and ps didn’t work anymore). Not sure
about the reason.

Because on 2.6 the module will by default automatically hide itself, and cannot
be removed then (except by rebooting), you should test the module with the
option ’removeme=0’, like e.g.: insmod ./samhain_hide.ko removeme=0

Tip: Hidden files can still be accessed if their names are known, thus using the option
--enable-install-name to rename installed files is recommended for security (also see caveat
no. 1 above).

Tip: Using the modules at system boot may cause problems with the GNOME (1.2) gdm display
manager (seen on SuSE 7.4 with the Ximian desktop; no problems observed with kdm). In case
of problems, you may need to reboot into single-user mode and edit the boot init script ...

9.2. Packing the executable

For even more stealthyness, it is possible to pack and encrypt the samhain executable. The packer is
just moderately effective, but portable. Note that the encryption key of course must be present in the
packed executable, thus this is no secure encryption, but rather is intended for obfuscation of the
executable. There is a make target for packing the samhain executable:

make samhain.pk

On execution, samhain.pk will unpack into a temporary file and execute this, passing along all
command line arguments. The temporary file is created in /tmp, if the sticky bit is set on this
directory, and in /usr/bin otherwise. The filename is chosen at random, and the file is only opened
if it does not exist already (otherwise a new random filename will be tried). The file permission is set
to 700.

The directory entry for the unpacked executable will be deleted after executing it, but on systems
with a /proc filesystem, the deleted entry may show up there. In particular, this is the case for
Linux. You should be aware that this may raise suspicion.

117



Chapter 9. Additional Features — Stealth

On Linux, the /proc filesystem is used to call the unpacked executable without a race condition, by
executing /proc/self/fd/NN, where NN is the file descriptor to which the unpacked executable
has been written. On other systems, the filename of the unpacked executable must be used, which
creates a race condition (the file may be modified between creation and execution).

The packed executable will not honour the SUID bit.

118



Chapter 10. Deployment to remote hosts

10.1. Method A: The deployment system

samhain includes a system to facilitate deployment of the client to remote hosts. This system enables
you to: build and store binary packages for different operating systems, install them, create baseline
databases upon installation, update the server configuration, and maintain the client database
required by the beltane web-based console.

The system comprises a shell script deploy.sh that will be installed in the same directory as the
samhain/yule (by default, /usr/local/sbin), and a directory tree that will be installed below the
samhain/yule data directory (see Section 10.1.2>). The script and the directory tree can be relocated
freely. There is a configuration file ~/.deploy.conf that is created in the home directory of the
user when deploy.sh is run for the first time, where you can specify the default for the top level
directory of the system.

Note: In the following, an architecture is just a label for some group of hosts, typically a
particular operating system (or some particular installation thereof). As long as you know what
the label means, you can choose it freely (alphanumeric + underscore).

The architecture for a build/install host (i.e. the association between a host and the
architecture-specific configuration data) is currently specified via a command-line option.

The system allows to use per-architecture customized build options, as well as per-host customized
runtime configuration files.

By default, the system will search for a sufficiently advanced incarnation of dialog to provide a nice
user interface. You can switch this off in favour of a plain console interface, if you prefer (or if you
want to run the script non-interactively).

To use this system, you must first install it with the command:

sh$ make install-deploy

Installation tip: This system is somewhat tied to the server (yule). While you can safely install it
later, installing it together with the server will take care that the defaults are already correct.
Upon first invocation a configuration file ~/.deploy.conf will be written, where you can modify
the defaults settings.

119



Chapter 10. Deployment to remote hosts

Backward compatibility

The deployment system has been completely revised in version 2.0 of
samhain. It will not work with samhain versions below 2.0 (i.e. you cannot
install them using this system). However, the default location and format of the
client database (used by the beltane web-based console) has not changed.

Installing the new version of the deploy system will not overwrite the old
version (deploy.sh will be installed as deploy2.sh, if an old version is detected).

10.1.1. Requirements

1. You must have compiled and installed the server (yule) on the local host where you use the
deploy system.

2. You must have installed the deployment system by using make deploy-install. This will install
the script deploy.sh into the sbindir (default /usr/local/sbin, but depends on your
configure options), and the deployment system into
localstatedir/install_name/profiles (default /var/lib/yule/profiles, but
depends on your configure options).

If you already have installed the deprecated version 1 deployment system, the script will be
installed as deploy2.sh.

3. For each architecture that you define, there must be (at least) one build host where development
tools (C compiler, make, strip) are available to build the client executable.

4. On each remote where you want to build or install, you should be able to login as root with ssh
using RSA authentication, such that ssh-agent can be used.

Tip: To use RSA-based authentication in a secure way, you may proceed as follows:

Use ssh-keygen to create a public/private key pair. Don’t forget to set a passphrase for the
private key (ssh-keygen will ask for it).

Copy the public key (HOME/.ssh/identity.pub for the ssh protocol version 1,
HOME/.ssh/id_rsa.pub for ssh protocol version 2) to HOME/.ssh/authorized_keys on any
remote host where you want to log in. Do not copy the private key HOME/.ssh/identity (ssh
protocol version 1) or HOME/.ssh/id_rsa (ssh protocol version 2) to any untrusted host !

On your central host, execute the commands (use "ssh-agent -c" if you are using a csh-style
shell):

bash$eval ‘ssh-agent -s‘

bash$ssh-add

120



Chapter 10. Deployment to remote hosts

You can then ssh/scp without typing the passphrase again, until you exit the current shell.

10.1.2. Layout of the deployment system
(localstatedir)/(install_name)/profiles/

|
|
|-- source ------------> (tarballs)
|
|-- configs -----------> (default configs)
|
|-- archpkg
| |
| |-- architecture -> (compiled package, setup script)
|
|-- hosts
| |
| |-- hostname -----> (optional host-specific config)
|
|-- libexec -----------> (scripts)
|
|-- private -----------> (gpg key)
|
|-- tmp

10.1.2.1. The configs subdirectory

The configs subdirectory holds for each architecture at least two files (example files will be placed
there upon installation of the deployment system):

<architecture>.configure (required)

The configure options for this architecture; one option per line, each enclosed in single quotes.

If this file does not exist, it will be copied from generic.configure, which is created upon
installation, and holds (only) some minimum options.

<architecture>.samhainrc (required)

The default runtime configuration file for a client running on this architecture. It is possible to
override this on installation with a file hosts/<hostname>/samhainrc.

121



Chapter 10. Deployment to remote hosts

<architecture>.preinstall (optional)

The shell script to run before installing a client. Typically this script would shutdown the
running client, if there is one.

Defaults to libexec/preinstall.

<architecture>.postinstall (optional)

The shell script to run after installing a client. This script receives the client password as first
(and only) argument, and typically would set the password in the client binary.

Defaults to libexec/postinstall.

<architecture>.initscript (optional)

The shell script to initialize/update the baseline database file installing a client.

Defaults to libexec/initscript.

10.1.2.2. The archpkg subdirectory

The archpkg directory holds for each architecture a subdirectory archpkg/<architecture>,
where compiled binary installer packages are stored.

For each build, up to four files will be stored: (a) the binary installer package
samhain-<version>.<format>, (b) the configure options used
(configure-<version>.<format>), (c) the samhain-install.sh script generated during the build
(install-<version>.<format>), and (only for packed executables) the client password set in
the executable (PASSWD-<version>.<format>).

10.1.3. Customizing the system

10.1.3.1. Setting default options

If you want to change the default options, you can set some of them via a configuration file
~/.deploy.conf, which is created upon the first invocation of deploy.sh.

122



Chapter 10. Deployment to remote hosts

10.1.3.2. Adding support for an architecture

To add support for another architecture <arch>, just create the two files <arch>.configure

(configure options) and <arch>.samhainrc (runtime configuration) in the configs directory of
the deployment system (see Section 10.1.2>).

Upon installation of the system, a template file generic.configure is created, which contains the
minimum options for a client.

10.1.3.3. Per-architecture pre-/postinstallation scripts

The default scripts for preinstallation (shutting down the running client) and postinstallation (setting
the client password, fixing the local configuration file), and the script for database initialization are
located in the libexec directory. You can override them for some (or all) architectures by storing
architecture-specific files <arch>.preinstall, <arch>.postinstall, <arch>.initscrip
in the configs directory.

10.1.3.4. Per-host runtime configuration

If you want to override the runtime configuration file configs/<arch>.samhainrc on a per-host
basis, you need to store a host-specific runtime configuration file as
hosts/<hostname>/samhainrc, before you run deploy.sh install.

10.1.4. Using the deploy.sh script

Tip: When run for the first time, deploy.sh will create a configuration file ~/.deploy.conf with
some default configuration options. You may want to review this file. Note that you can override
all options there with command-line options; the configuration file is just for convenience, if you
don’t like the defaults and don’t want to type the corresponding option on the command line
every time.

deploy.sh can be invoked in three ways:

bash$deploy.sh --help

This will provide a general overview.
bash$deploy.sh --help command

This will provide help on a specific command (where command can be any of:
’clean’, ’download’, ’checksrc’, ’build’, or ’install’.
bash$deploy.sh [options] command

This will run ’command’ with the specified options.

123



Chapter 10. Deployment to remote hosts

A log of the last run will be kept in tmp/logfile.lastrun

command can be any of the following:

info

Provides information on installed clients, or available installer packages.

clean

Removes source tarballs from the source subdirectory of the deploy system. Removes unused
installer packages from the archpkg/<arch> subdirectories of the deploy system.

download

Download a source tarball from the distribution site, verify the GnuPG signature (gpg must be
installed), and install it into the source subdirectory of the deploy system. Requires one of:
wget, curl, links, lynx, fetch, or lwp-request.

checksrc

Check the GnuPG signatures of available source tarballs in the source subdirectory of the
deploy system (gpg must be installed). Optionally delete tarballs with no/invalid signature.

build

Build a binary installer package for the chosen architecture from one of the tarballs in the
source subdirectory, and store it in the archpkg/<architecture> subdirectory (which
will be created if it does not exist yet). Requires a file <architecture>.configure and a
file <architecture>.samhainrc in the configs subdirectory.

install

Copy a pre-built binary package (built with deploy.sh build) to a remote host, stop the client
running there (if any), install the (new) client, update the server configuration file and reload the
server, initialize the file signature database and fetch it from the remote host.

uninstall

Remove a samhain client that was previously installed with deploy.sh install.

10.1.4.1. General options

-q | --quiet | --quiet=2 Produce output suitable for logging. Note that --quiet=2 implies --yes (see
below).

-s | --simulate Print what would be done, but do not actually change the system.

-y | --yes Assume yes as answer to all prompts and run non-interactively.

124



Chapter 10. Deployment to remote hosts

-o <file> | --logfile=<file> Specify an output file for messages that would go to stdout otherwise.
Has no effect on stderr (error messages).

-d <dialog> | --dialog=<dialog> Specify your preferred "dialog" clone (e.g. Xdialog). Use "no" to
force plain text.

10.1.5. deploy.sh info

This command will show information for hosts in the client database (default), or for available
binary installer packages.

10.1.5.1. Specific options

--packages Show information for available installer packages rather than for clients.

10.1.6. deploy.sh clean

This command will clean unused files: source tarballs in the source subdirectory, and unused
installer packages in the archpkg/<arch> subdirectories.

10.1.6.1. Specific options

There are no specific options for this command.

10.1.7. deploy.sh download

This command will download a source tarball from the distribution website, verify its GnuPG
signature, and install it into the source subdirectory. This command requires that either wget or
lynx is in your PATH.

Manual installation of source: This note applies if you want to download source manually
instead. Samhain distribution tarballs contain exactly two files: first, a source tarball with the
source code, and second, its GnuPG signature. For installation into the source subdirectory, the
distribution tarball must be unpacked, and both the source source tarball and its GnuPG
signature moved into the source subdirectory.

125



Chapter 10. Deployment to remote hosts

10.1.7.1. Specific options

--version=<version> The version of samhain to download. The default is "current" to download the
current version.

10.1.8. deploy.sh checksrc

This command will check the GnuPG signatures of source tarballs in the source subdirectory.

10.1.8.1. Specific options

--delete Delete source tarballs if PGP signature cannot be verified.

10.1.9. deploy.sh build

This command will create a temporary directory on a remote build host, copy the selected version of
the source there, build the selected format of the binary installer package, retrieve and store the
package into the archpkg/<architecture> subdirectory, and remove the temporary build
directory.

For each build, up to four files will be stored: (a) the binary installer package
samhain-<version>.<format>, (b) the configure options used
(configure-<version>.<format>), (c) the samhain-install.sh script generated during the build
(install-<version>.<format>), and (only for packed executables) the client password set in
the executable (PASSWD-<version>.<format>).

Package formats: Note that the build host must provide the required tools if you want to build a
package for the native package manager (i.e. deb, rpm, tbz2, depot (HP-UX), or solaris pkg). On
RPM-based Linux distributions and Gentoo Linux, building of RPMs and tbz2s, respectively,
should just work. Debian requires additional packages for building debs.

The "run" binary package format does not require additional tools (it is a self-extracting tar
package based on the makeself application, which is included in the samhain distribution). Use
/bin/sh <package> --help for details.

10.1.9.1. Specific options

--host=<hostname> The build host.

126



Chapter 10. Deployment to remote hosts

--arch=<arch> The architecture to build for. This is used to get the "./configure" options from the
file configs/<arch>.configure, and to store the binary package into the directory
archpkg/<arch>.

--version=<version> The version of samhain you want to build. Must be in the source
subdirectory.

--format=<run|rpm|deb|tbz2|depot|solaris-pkg> The format of the binary installer package.
"run" is a portable (Unix) package based on makeself, "deb" is a Debian package, "tbz2" is a binary
Gentoo Linux package, "rpm" is an RPM package, "depot" is an HP-UX binary package, and
"solaris-pkg" for Sun Solaris.

--packed=<password> Build a packed executable, and set the client password before packing.

--user=<username> Login as <username> on the build host (defaults to root).

--add-path=<path> Append <path> to the PATH variable on the build host.

--tmpdir=<path> Temporary directory to use on the build host (defaults to /tmp).

10.1.10. deploy.sh install

This command will create a temporary directory on a remote host, copy the selected version of the
installer package, its corresponding samhain-install.sh script, the runtime configuration file, and the
preinstall, postinstall, initscripts scripts there. It will then:

(A) run the preinstall script on the client, which shuts down the running samhain daemon (if
there is any).

(B) install the binary installer package on the client.

(C) run the postinstall script on the client, which sets the client password (unless the binary is
packed), and replaces the default runtime configuration file with the proper one. The latter step is
required, because deploy.sh build builds from the pristine source, so the runtime configuration file in
the installer package is just the default one.

(D) copy the proper client runtime configuration file to the server data directory (as
rc.<client_name>), fix the server configuration file, and restart the server (which will fail
non-fatally if the server is not running).

127



Chapter 10. Deployment to remote hosts

(E) run the initscript script on the client, which initializes (or updates) the baseline database.

(F) retrieve the baseline database, copy it to the server data directory (as file.<client_name>),
and remove the temporary directory on the client.

The runtime configuration file: If hosts/<hostname>/<arch>.samhainrc or
hosts/<hostname>/samhainrc exists, this will be used (in this order of preference), otherwise
configs/<arch>.samhainrc will be used. If the latter does not exist, the command will fail.

Transparent handling of particular build options: The build options ’--enable-stealth=..’ is
handled by determining the argument from the configure options that were used for the build,
and preparing the runtime configuration file appropriately. I.e., you should provide a ’normal’,
plain-text configuration file.

The build option ’--with-nocl=..’ is handled by determining the argument (which is required for
database initialization) from the configure options that were used for the build, and passing it to
the initscript script.

10.1.10.1. Specific options

--host=<hostname> The host on which to install.

--group=<foobar> The group to which you want to assign that client (default: none). This is used
by the beltane web console to restrict access to users which are members of that group.

--arch=<arch> The architecture to install. This is used to get the installer package from the
directory archpkg/<arch>/.

--version=<version> The version of samhain you want to install. An installer package for this
version must exist in the archpkg/<arch>/ subdirectory.

--format=<run|rpm|deb|tbz2|depot|solaris-pkg> The format of the binary installer package.
"run" is a portable (Unix) package based on makeself, "deb" is a Debian package, "tbz2" is a binary
Gentoo Linux package, "rpm" is an RPM package, "depot" is an HP-UX binary package, and
"solaris-pkg" for Sun Solaris.

--yule_exec=<path> Path to the yule executable.

--yule_conf=<path> Path to the yule configuration file.

128



Chapter 10. Deployment to remote hosts

--yule_data=<path> Path to the yule data directory.

--no-init Do not initialize the file signature (baseline) database (and consequentially, do not replace
the file.<host> file on server.

--no-rcfile Do not replace the rc.<host> file on server.

--no-start Do not start up the client after installation.

--local=<command> An optional command executed locally (i.e. on the server) twice (with the last
argument set to ’first’ and ’second’, respectively. First is after client config file installation (i.e.
before baseline database initialisation on the client), second is just before client startup. Will be
called as command hostname arch basedir yule_data first|second.

--tmpdir=<path> Temporary directory to use on the installation host (defaults to /tmp).

10.1.11. deploy.sh uninstall

This command will remove a samhain client that was previously installed by using deploy.sh install.

10.1.11.1. Specific options

--host=<hostname> The host on which to uninstall.

--tmpdir=<path> Temporary directory to use on this host (defaults to /tmp).

10.1.12. Usage notes

Warning

On Solaris, the PATH environment variable on the remote host (where you
build or deploy) may get set according to /etc/default/su, which may be
different from what you would expect (noted by S. Bailey).

129



Chapter 10. Deployment to remote hosts

10.2. Method B: The native package manager

Samhain provides an easy method to create custom binary packages with the native package
manager of your operating system. Basically, this works like:

bash$./configure [your preferred options]

bash$make rpm|deb|tbz2|depot|solaris-pkg

I.e. the binary package will be built with the compile options chosen in the preceding ./configure
command. Supported package formats are: rpm (e.g. Redhat, SuSE, ...), deb (Debian), tbz2 (Gentoo
Linux), depot (HP-UX), and solaris-pkg (Solaris).

Tip: The binary package will use the OS-specific samhainrc.OS configuration file from the
source directory, thus if you customize this, your package will contain your customized version.

Tip: Upon installation, the package will not automatically initialize the baseline database, and not
start the daemon (though it will install the runlevel script to start upon boot).

Note: For reasons explained in Section 11.2>, we do not recommend to distribute binary
packages to third parties. On the other hand, it is perfectly ok to use a self-built binary package
to install/distribute samhain on your machine/within your own network.

10.2.1. Building an RPM

10.2.1.1. Custom RPM

If you run ./configure in the source directory, a spec file samhain.spec will be created from
samhain.spec.in. You can then use make rpm to create source and binary RPMs, or make srpm
to create just the source RPM.

The RPM will be located in /usr/src/(distribution-specific)/RPMS/i386. Installing the
RPM will not initialize the database automatically.

If anything fails during the build (and after installation has begun), just cd into the build directory
and do a make uninstall && make uninstall-boot. If building for a non-RedHat system, the error
messages will tell you which file paths in the spec file were incorrect.

130



Chapter 10. Deployment to remote hosts

10.2.1.2. Single-host

If you want to create an RPM for a single-host version of samhain without any fancy options, you
can just run

bash$ rpmbuild -ta samhain-version.tar.gz

on the tarball (there is a default spec file in there).

The RPM will be located in /usr/src/(distribution-specific)/RPMS/i386. Installing the
RPM will not initialize the baseline database automatically.

10.2.2. Building an HP-UX package

First run ./configure in the source directory with your preferred options, then do a make depot. The
result should be a package named samhain.depot, that can be installed with swinstall. Installing
the package will not initialize the baseline database automatically.

10.2.3. Building a Solaris package

Note: This is experimental and not well tested. Constructive feedback from experienced Solaris
administrators is welcome.

First run ./configure in the source directory with your preferred options, then do a make
solaris-pkg. The result should be a package named samhain.pkg.

10.2.4. Building a Gentoo Linux package

First run ./configure [your preferred options] in the source directory (reminder: use ./configure
--prefix=USR, NOT ./configure --prefix=/usr for standard paths), then do a make tbz2. The .tbz2
package will be in /usr/portage/packages/All (this is just how Gentoo package building
works).

The Gentoo package thus created will not initialize the database automatically upon installation. The
.tbz2 package file will be in /usr/portage/packages/All (this is just how Gentoo package
building works).

Note: If you just want to install on your own system, rather than building a package for other
machines, you can use the command make emerge (after running ./configure, of course).

131



Chapter 10. Deployment to remote hosts

10.2.5. Building a Debian package

First run ./configure in the source directory (reminder: use ./configure --prefix=USR, NOT
./configure --prefix=/usr for standard paths), then do a make deb. The .deb package and the
corresponding .dsc file will be in the directory above the source directory (this is just how Debian
package building works).

You will need the following additional Debian packages in order to build a Debian packages: apt-get
fakeroot, apt-get debmake, apt-get debhelper, apt-get devscripts, and apt-get cpio.

The Debian package thus created will not initialize the database automatically upon installation. It
will be located in the parent directory of the source directory (that’s just the way the Debian build
system works).

132



Chapter 11. Security Design

11.1. Usage

It is recommended to:

• compile a static binary (not linked to shared libraries), using the configure option --enable-static
if possible (not possible on Solaris — this is a Solaris problem, not a problem of samhain)

• strip the binary (on i386 Linux/FreeBSD, also use the provided sstrip utility: strip samhain &&
sstrip samhain). This will help somewhat against intruders that try to run it under a debugger ...

Note: make install will always strip the excutables. Trying to strip again by hand may corrupt
the executable.

• use signed database/configuration files using the configure option --with-gpg=PATH_TO_GPG,
and compile in the fingerprint of the signing key ( --with-fp=...)

• take a look at the stealth options - while ’security by obscurity’ only is a very bad idea, it certainly
helps if an intruder does not know what defenses you have in place

• read the next chapter to understand how the integrity of the samhain executable van be verified.

11.2. Integrity of the samhain executable

Each samhain executable contains a compiled-in key, that is used when the signatures of emails
and/or logfile entries are verified. By default, a cryptographically strong random key is generated by
the configure script at compile time. Thus, each build is unique, and signature verification will fail if
a different build is used, except if the compiled-in key was set to a common value for both builds.

To set a user-defined key, there is an option

./configure --enable-base=B1,B2

where B1,B2 should be two integers in the range 0...2147483647.

133



Chapter 11. Security Design

The key generated by configure is printed in the configure script’s output. It is recommended that
you save this key and use it for further builds.

Whenever you try to verify the integrity of e-mails or log file entries, this compiled-in key is used (to
be more specific: the signature key is encrypted with a one-time pad generated from the message
itself and the compiled-in key). As a result, if executable B is used to verify the integrity of e-mails
sent by executable A, integrity verification will fail if the compiled-in keys of A and B do not match.
This can be used to check the integrity of A in a straightforward way (check e-mails on another host,
using a different executable compiled with the same key).

Obviously, this scheme can be broken, but it requires an intruder to disassemble/decompile and
analyze the existing samhain executable, rather than simply replace it with a precompiled trojan.

However, if you use a precompiled samhain executable (e.g. from a binary distribution), in principle
a prospective intruder could easily obtain a copy of the executable and analyze it in advance. This
will enable her/him to generate fake audit trails and/or generate a trojan for this particular binary
distribution.

For this reason, it is possible for the user to add more key material into the binary executable. This is
done with the command:

samhain --add-key=key@/path/to/samhain_executable

This will read the file /path/to/samhain_executable, add the key key, which can be a string of
arbitrary length, except that it should not contain a ’@’ (because it has a special meaning, separating
key from path), and write the new binary to the location /path/to/executable.out (i.e. with
.out appended).

For Clarification: Please note that --add-key does not replace a compiled-in key but only adds
to it. Integrity verification depends on both the compiled-in and any added key material, and
integrity verification using different binaries will therefore only work if all were compiled with the
same key and had the same extra key material (if any) added in.

WARNING

Using a precompiled samhain executable from a binary package distribution is
not recommended unless you add in key material as described above.

134



Chapter 11. Security Design

11.3. Client executable integrity

If you use samhain in a client/server setup, the client needs to authenticate to the server using a
password that is located within the client executable, at one of several possible places (where the
valid place for your particular build is chosen at random at compile time). If the password is set, the
alternative places are filled with random values.

Upon authentication to the server, client and server negotiate ephemeral keys for signing and
encrypting further communication.

This implies that an intruder needs to analyse the running process to obtain knowledge of the
signing/encryption keys in order to successfully fake a valid communication with the server, or she
needs to analyse/disassemble the executable in order to find the password.

11.4. The server

The server does not need root privileges. Therefore, if it is started with root privileges, it will drop
them irrevocably after startup. If a privileged port (below 1024) must be opened, the server will first
open it, then drop root, and only thereafter accept any connection on the port.

The server can be chrooted, and actually has a config file option to do so by itself (which means that
you don’t need to copy shared libraries into the chroot environment).

(If your clients are configured to download baseline databases and configuration files from the
server:) The server does not need write access to the directory where client baseline databases and
configuration files are stored, and it would be wise to deny such access (chown to some other user,
and allow group read access for the server).

11.5. General

Obviously, a security application should not open up security holes by itself. Therefore, an inportant
aspect in the development of samhain has been the security of the program itself. While samhain
comes with no warranty (see the license), much effort has been invested to identify security
problems and avoid them.

As the client requires root privileges, while the server does not, the clients has no open socket to
listen on the network. Consequently, all client/server connections are initiated by the client.

To avoid buffer overflows, only secure string handling functions are used to limit the amount of data
copied into a buffer to the size of the respective buffer (unless it is known in advance that the data

135



Chapter 11. Security Design

will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to zero thereafter. Signal
handlers, timers, and file creation mask are reset, and the core dump size is set to zero. If started as
daemon, all file descriptors are closed, and the first three streams are opened to /dev/null.

If external programs are used (in the entropy gatherer, if /dev/random is not available), they are
invoked directly (without using the shell), with the full path, and with a limited environment (by
default only the timezone). Privileged credentials are dropped before calling the external program.

With respect to its own files (configuration, database, the log file, and its lock), on access samhain
checks the complete path for write access by untrusted users. Some care has been taken to avoid race
conditions on file access as far as possible.

Critical information, including session keys and data read from files for computing checksums, is
kept in memory for which paging is disabled (if the operating system supports this). This way it is
avoided that such information is transfered to a persistent swap store medium, where it might be
accessible to unauthorized users.

Random numbers are generated from a pseudo-random number generator (PRNG) with a period of
2^88 (actually by mixing the output from three instances of the PRNG). The internal state of the
PRNG is seeded from a strong entropy source (if available, /dev/random is used, else lots of
system statistics is pooled and mixed with a hash function). The PRNG is re-seeded from the entropy
source at regular intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of the PRNG can be inferred.
To avoid this, the internal state of the PRNG is hidden by hashing the output with a hash function.

136



Appendix A. List of options for the ./configure
script

A.1. General

--with-rnd=egd/dev/unix/default

The entropy gatherer to use. ’egd’ is the Entropy Gathering Daemon (EGD), ’dev’ is
/dev/random, ’unix’ is the built-in Unix entropy gatherer (similar to EGD), and ’default’ will
check for /dev/random first, and use ’unix’ as fallback.

--with-egd-socket=NAME

The path to the EGD socket. Default is localstatedir/lib/samhain/entropy (see
Section A.5).

--enable-identity=USER

The username to use when dropping root privileges (default nobody).

--with-sender=SENDER

The username of the sender for e-mail, or a complete e-mail address. If only a username is
given, SENDER@{FQDN_of_local_host} will be used for the sender. Default is daemon.

--with-recipient=ADDR

The recepient(s) for e-mail, seperated by whitespace (max. 8). You can add recepients in the
configuration file as well.

--with-trusted=UID

Trusted users (must be a comma-separated list of numerical UIDs). Only required if the
configuration file must be on a path writeable by others than root and the effective user.

--with-timeserver=HOST

Set host address for time server (default is to use own clock). You can set this in the
configuration file as well. An address in the configuration file will take precedence. Note that
the simple ’time’ service (port 37/tcp) is used.

--with-alttimeserver=HOST

Set host address for an alternative (backup) time server.

--enable-stealth=XOR_VAL

Enable stealth mode, and set XOR_VAL. XOR_VAL must be decimal, in the range 127 -- 255,
and will be used to obfuscate literal strings.

137



Appendix A. List of options for the ./configure script

--enable-micro-stealth=XOR_VAL

As --with-stealth, but without steganographic hidden configuration file.

--enable-nocl=PW

Command line parsing is disabled, but command-line arguments will be read from STDIN if
the first command line argument is PW. PW="" (empty string) will disable command line
parsing completely. This option may be used as addition to --enable(-micro)-stealth to prevent
interactive enforcement of telltale output.

--enable-install-name=NAME

Upon installation, rename every file from samhain (or yule for the server) to NAME. To be
used in conjunction with --with-(micro-)stealth.

--enable-khide=SYSTEM_MAP

(Linux only) compile kernel modules to hide all files with NAME (from
--enable-install-name=NAME) within the path. By default, NAME is ’samhain’ for the
client/standalone version, and ’yule’ for the server. SYSTEM_MAP must be the path to the
System.map file corresponding to the kernel.

--enable-base=B1,B2

Set compiled-in key for email and logfile signature verification. ONE string (no space) made of
TWO comma-separated integers in the range 0 -- 2147483647. See Section 11.2> for details on
this option.

--enable-db-reload

[CLIENT ONLY] Enable reload of file database on SIGHUP (otherwise, only the config file
will be read again).

--enable-xml-log

Enable XML format for the log file.

--with-database=mysql/postgresql/oracle/odbc

Support logging to a relational database (MySQL, PostgreSQL, Oracle or unixODBC). Oracle
and unixODBC are not fully tested.

--with-prelude

Support logging to the Prelude IDS system. Requires the libprelude library.

--with-libprelude-prefix=PFX

Prefix where libprelude is installed. This will be used to search libprelude-config in the
PFX/bin/ directory.

--disable-ipv6

Disable IPv6 support.

138



Appendix A. List of options for the ./configure script

--enable-debug[=gdb]

Enable debugging. Will slow down things, increase resource usage, and may leak information
that should be kept secure. Will dump ’core’ and ’samhain_backtrace’ in the root directory on
segfault. Do not use in production code.

If used as --enable-debug=gdb, will only compile in debugging symbols for the GNU gdb
compiler. This is more suitable for debugging the code itself.

--enable-ptrace

Periodically check whether a debugger is attached, and abort if yes. Only takes effect if
--enable-debug is not used. Only tested on Linux.

--with-cflags=FLAGS

Additional flags to pass to the compiler.

--with-libs=LIBS

Additional libraries to link with.

--disable-largefile

Disable support for large files (> 2GB). Large file support is enabled automatically if your
system supports it.

--enable-udp

This options enables code to listen on port 514/upd, i.e. the syslog port. Thus the server can
receive syslog reports from remote hosts (if they are configured to send), and log them to any of
the log facilities supported by samhain. If you compile in support for this, you still need to
enable it in the runtime configuration file.

--disable-dnmalloc

This options disables use of the dnmalloc allocator that is the default since samhain 2.4.5, and
reverts to using the standard allocator provided by your system.

A.2. Optional modules to perform additional checks

These are all client-only options, as the server does not perform any checks (if you want to run
checks on the log server host, you need to run a client there as well).

--enable-login-watch

[CLIENT ONLY] Compile in the module to watch for login/logout events.

--enable-mounts-check

[CLIENT ONLY] Compile in the module to check for correct mount options.

139



Appendix A. List of options for the ./configure script

--enable-userfiles

[CLIENT ONLY] Compile in the module to check for files in user home directories (i.e. with
paths relative to $HOME for all users).

--enable-suidcheck

[CLIENT ONLY] Compile in the module to check file system for SUID/SGID binaries not in
the database.

--with-kcheck=SYSTEM_MAP

[CLIENT ONLY] (Linux/FreeBSD/OpenBSD only) Compile in the module to check for
runtime kernel modifications (e.g. clobbered kernel syscalls) to detect kernel-level rootkits.
SYSTEM_MAP must be the path to the System.map file corresponding to the kernel.

A.3. OpenPGP Signatures on Configuration/Database
Files

--with-gpg=PATH

Use GnuPG to verify database/configuration file. The public key of the effective user, usually
root, (in ~/.gnupg/pubring.gpg) will be used.

--with-keyid=0x<hex KeyID>

This optional argument allows to specify a key ID, if there is more than one key in your
keyring. This is only used for the installation routine, and for configuring the samhainadmin.pl
convenience script.

--with-checksum=CHECKSUM

Compile in TIGER checksum of the gpg binary. CHECKSUM must be the full line output by
samhain or gpg when computing the checksum.

--with-fp=FINGERPRINT

Compile in the fingerprint of the key used to sign the configuration/database file. If used,
samhain will verify the fingerprint, but still report on the used public key.

A.4. Client/Server Connectivity

--enable-network=client/server

Compile a client or server, rather than a standalone version.

--disable-encrypt

Disable encryption for client/server communication.

140



Appendix A. List of options for the ./configure script

--enable-encrypt=1

Use version 1 encryption for client/server communication. Samhain 1.8.x introduces an
enhanced version (version 2) of the client/server encryption. By default, the server is backward
compatible, i.e. it can communicate with both version 1 (pre-1.8.x) and version 2 clients.
Building the server with the --enable-encrypt=1 option makes it impossible to communicate
with version 2 clients.

--disable-srp

Disable the use of the zero-knowledge SRP protocol to authenticate to log server, and use a
(faster, but less secure) challenge-response protocol. This must be set to the same value for
client and server, i.e. either disabled for client and server, or for none of both.

--with-libwrap[=PATH]

[SERVER ONLY] Build the server with support for libwrap (Wietse Venema’s TCP wrappers
library). In /etc/hosts.allow and/or /etc/hosts.deny, use ’yule’ or the name defined
with --enable-install-name=NAME for the name of the daemon.

--with-port=PORT

The port on which the server will listen (default is 49777), or to which the client will connect,
respectively. This must be set to the same value for client and server. Only needed if this port is
already used by some other application. Port numbers below 1024 require root privileges for the
server.

--with-logserver=HOST

[CLIENT ONLY] The host address of the log server. This can be set in the configuration file. A
compiled-in address is only required if you want to fetch the configuration file from the log
server. An address in the configuration file will take precedence.

--with-altlogserver=HOST

[CLIENT ONLY] The host address of an alternative (backup) log server.

A.5. Paths

Compiled-in paths may be as long as 255 chars. If the --with-stealth option is used, the limit is 127
chars. The paths to the database, log file, and pid/lock file can be overridden in the configuration file
(see Section C.1>).

Tip: If using NFS with clients on different hosts accesing the same files, you can set the
database, log file, and pid/lock file names to "AUTO" in the configuration file to simply tack on the
hostname on the compiled-in path. The same length limits apply.

141



Appendix A. List of options for the ./configure script

--prefix=PREFIX

The install prefix. Default is none, and using the Filesystem Hierarchy Standard 2.2 directory
layout. If you prefer the GNU layout (everything under /usr/local), use --prefix=/usr/local. See
Section 2.10> for details.

--sbindir=DIR

The binary directory (default is /usr/local/sbin)

--localstatedir=DPFX

The state data directory prefix (default is /var). Data will be written to DPFX/lib/install_name.

--with-state-dir=DIR

The state data directory (default is DPFX/lib/install_name). Data will be written to this
directory.

--mandir=MPREFIX

The man directory directory prefix (default is /usr/local/share/man).

--with-tmp-dir=TPFX

The directory where tmp files are created (config/database downloads from server, extracted
PGP-signed parts of config/database files) (default is HOME).

--with-config-file=FILE

The full path of the configuration file (default is /etc/(install_name)rc).

--with-log-file=FILE

The path of the log file (default is DPFX/log/samhain_log).

--with-pid-file=FILE

The path of the PID file (default is DPFX/run/(install_name).pid).

--with-html-file=FILE

[SERVER ONLY] The path of the HTML status file where the current status of clients is
displayed (default is DPFX/log/(install_name).html).

--with-console=PATH

The path of the console (default is /dev/console). This may be a FIFO.

--with-altconsole=PATH

The path of a second console (default is none). This may be a FIFO. If defined, console output
will always go to both console devices (but note that console devices are only used when
running as daemon).

142



Appendix B. List of command line options

B.1. General

1. -D, --daemon Run as daemon.

2. --foreground Stay in the foreground, do not run as daemon.

3. -f, --forever Loop forever, even if not daemon.

4. --bind-address=<IP-Address> Use this IP address (i.e. interface) for outgoing connections (e.g.
on multi-interface machines).

5. --server-port=<port number> Connect to this port on the server (client-side option for
client-server connection).

6. -s <arg>, --set-syslog-severity=<arg> Set the severity threshold for syslog. arg may be one of
none, debug, info, notice, warn, mark, err, crit, alert.

7. -l <arg>, --set-log-severity=<arg> Set the severity threshold for logfile. arg may be one of
none, debug, info, notice, warn, mark, err, crit, alert.

8. -m <arg>, --set-mail-severity=<arg> Set the severity threshold for e-mail. arg may be one of
none, debug, info, notice, warn, mark, err, crit, alert.

9. --set-database-severity=<arg> Set the severity threshold for logging to a RDBMS. arg may be
one of none, debug, info, notice, warn, mark, err, crit, alert.

10. --set-prelude-severity=<arg> Set the severity threshold for logging to the Prelude IDS system.
arg may be one of none, debug, info, notice, warn, mark, err, crit, alert.

11. -p <arg>, --set-print-severity=<arg> Set the severity threshold for terminal/console. arg may
be one of none, debug, info, notice, warn, mark, err, crit, alert.

12. -x <arg>, --set-extern-severity=<arg> Set the severity threshold for external program(s). arg
may be one of none, debug, info, notice, warn, mark, err, crit, alert.

13. -L <arg>, --verify-log=<arg> Verify the integrity of the log file and print the entries (arg is the
path of the log file).

14. -j, --just-list Modify -L to just list the logfile, rather than verify (to de-obfuscate the logfile if
you have compiled for stealth mode). Order matters: this must come before -L.

15. -M <arg>, --verify-mail=<arg> Verify the integrity of e-mailed messages (arg is the path of
the mail box).

16. -V <arg>, --add-key=<arg> Add key material to the compiled-in key (see Section 11.2>). arg
must be of the form key@/path/to/executable. Output will be written to
/path/to/executable.out.

17. -H <arg>, --hash-string=<arg> Print the hash of a string / the checksum of a file, and exit. If
arg starts with a ’/’, it is assumed to be a file, otherwise a string. This function is useful to test
the hash algorithm.

143



Appendix B. List of command line options

18. -z <arg>, --tracelevel=<arg> If compiled with --enable-debug: arg > 0 to switch on debug
output. If compiled with --enable-trace: arg > 0 max. level for call tracing.

19. -i <arg>, --milestone=<arg> If compiled with --enable-trace: trace from milestone arg to
arg+1. If arg = -1, trace all.

20. -d <arg>, --list-database=<arg> List the database file arg (use “default” for the compiled-in
path).

21. --list-file=<path> Modify -d to list the literal content of a file, if this has been stored. Order
matters: this must come before -d.

22. -a, --full-detail Modify -d to list full details (numeric mode, owner, group, all three timestamps
(ctime, mtime, atime), and the checksum. Order matters: this must come before -d.

23. --delimited Same as --full-detail, but with comma-delimited fields.

24. -c, --copyright Print copyright information and exit.

25. -v, --version Show version information and compiled-in options.

26. -h, --help Print a short help on command line options and exit.

27. --trace-enable Print a trace of the execution flow.

28. --trace-logfile=<arg> Use file arg to log the trace.

B.2. samhain
1. -t <arg>, --set-checksum-test=<arg> Set file checking to init, update, or check. Use init to

create the database, update to update it, and check to check files against the database.

Tip: Yes, it is normal that update takes much more time than init .

2. -i, --interactive Use interactive mode for update (ask before updating an entry).

3. -e <arg>, --set-export-severity=<arg> Set the severity threshold for forwarding messages to
the log server. arg may be one of none, debug, info, notice, warn, mark, err, crit, alert.

4. -r <arg>, --recursion=<arg> Set the default recursion level for directories (0 -- 99).

5. --init2stdout Write the database to stdout when performing the initialization.

B.3. yule
1. -S, --server Run as server. Only required if the binary is dual-purpose.

2. -q, --qualified Log received messages with the fully qualified name of client host.

3. --chroot=<arg> Chroot to to the directory arg (should be an absolute path.

144



Appendix B. List of command line options

4. -G, --gen-password Generate a random password suitable for use in the following option (16
hexadecimal digits).

5. -P <arg>, --password=<arg> Compute a client registry entry. arg is the chosen password (16
hexadecimal digits).

145



Appendix C. Configuration file syntax and
options

C.1. General

The configuration file for samhain is named samhainrc by default. Also by default, it is placed in
/etc. (Name and location is configurable at compile time). The distribution package comes with a
commented sample configuration file.

This section introduces the general structure of the configuration file. Details on individual entries in
the configuration files are discussed in Section 5.4> (which files to monitor), Section 4.1> (what
should be logged, which logging facilities should be used, and how these facilities are properly
configured), and Section 5.11> (monitoring login/logout events).

The configuration file contains several sections, indicated by headings in square brackets (e.g.
[Database]). Sections exist to group related directives and avoid eventual name clashes among
options. Any particular section may occur multiple times.

Each section may hold zero or more key=value pairs. Keys are not case sensitive, and space around
the ’=’ is allowed, as well as before the key and after the value. More specifically: the line is
processed by splitting into key and value at the first ’=’, trimming whitespace from the beginning
and end of both key and value, and converting the key to lowercase.

Blank lines and lines starting with ’#’ are comments. Everything before the first section and after an
[EOF] is ignored. The [EOF] end-of-file marker is optional. The file thus looks like:

# this is a comment
[Section heading]
key1=value
key2=value

[Another section]
key3=value
key4=value

For boolean values the following are equivalent (case-insensitive): True, Yes, or 1. Likewise, the
following are equivalent (case-insensitive): False, No, or 0.

In lists, values can be separated by space, tabs, or commas.

Tip: Each section may occur multiple times.

146



Appendix C. Configuration file syntax and options

Note: You can explicitely end the configuration file with an [EOF] (on a separate line), but this is
not required, unless there is some junk beyond that may confuse the parser. A PGP signature
does not qualify as ’junk’ if samhain is compiled to verify the signature.

C.1.1. Shell expansion

As of version 2.5.3, it is possible to use shell expansion to define the value of an option. For any
configuration file option written as Key = $( shell_command ), the string contained within the $()
will be passed literally to the shell (by invoking /bin/sh -c shell_command), and the first line
returned by the shell - after stripping the newline char - will replace the $(..). If there is no output
within 120 seconds, samhain will ignore the configuration option (and report an error).

Note: You cannot define just part of an option value this way. You need to write the shell
expression such that it covers the whole option value (e.g. by including an ’echo -n foobar’).

The PATH environment variable will be set to "/sbin:/bin:/usr/sbin:/usr/bin:/usr/ucb", the SHELL
variable to "/bin/sh", the IFS variable to " \t\n", and the TZ variable will be copied from the startup
environment. No other environment variables will be set.

In case you are unsure about the need for escaping: yes, the whole string will be passed as a single
argument to the shell, like calling /bin/sh -c ’shell_command’ from the shell, BUT since this is
done from within a C program rather than from a shell, there are no single quotes surrounding the
whole string.

In the following example, we parse the output of ifconfig to supply a list of all interfaces to the
"PortCheckInterface" option.

#
# Lines broken for display purposes. Must be ONE line in config file!!!

# Linux/Solaris, FreeBSD, OpenBSD

$Linux:.*:.*
PortCheckInterface=$( /sbin/ifconfig | grep ’inet addr:’ |

sed ’s/.*r:\([0-9.]*\).*/\1 /’ | tr -d ’\n’; echo )
$end

# Solaris, FreeBSD, OpenBSD

$(SunOS|FreeBSD|OpenBSD):.*:.*
PortCheckInterface = $( /sbin/ifconfig -a| grep ’inet ’ |

147



Appendix C. Configuration file syntax and options

sed ’s/.*t \([0-9.]*\) .*/\1 /’ | tr -d ’\n’;echo )
$end

C.1.2. Conditionals

Conditional inclusion of entries for some host(s) is supported via any number of @if.. / @else / @fi
directives. @if.., @else, and @fi must each be on separate lines. Configuration options in the @if..
(or the optional @else) branch will be read or ignored depending on the result of the test.

Supported tests are as follows:

hostname_matches

@if hostname_matches regex will succeed if the hostname matches the regular expression
given.

system_matches

@if system_matches regex will succeed if the string sysname:release:machine — i.e.
$(uname -s):$(uname -r):$uname - m) — matches the regular expression given.

file_exists

@if file_exists path will succeed if a file with the given absolute path exists. Wildcards/regular
expression are not supported.

interface_exists

@if interface_exists address will succeed if a network interface with the given address exists.

command_succeeds

@if command_succeeds command will execute /bin/sh -c command and succeed if the exit
status is zero. The PATH environment variable will be set to
"/sbin:/bin:/usr/sbin:/usr/bin:/usr/ucb", the SHELL variable to "/bin/sh", the IFS variable to "
\t\n", and the TZ variable will be copied from the startup environment. No other environment
variables will be set.

You can negate a test by saying ’@if not ..’. The ’not’ may be replaced by a ’!’. The following are all
valid: ’@if not file_exists /etc/motd’, ’@if !file_exists /etc/motd’, and ’@if ! file_exists /etc/motd’.

Note on backward compatibility: For backward compatibility, instead of @if
hostname_matches hostname you can also say @hostname.

Likewise, instead of @if system_matches sysname:release:machine you can also say
$sysname:release:machine.

Also, the old method of negating by prepending a ’!’ to the ’@’ (’$’) is still supported, as well as
the use of ’@end’ (’$end’) instead of ’@fi’.

148



Appendix C. Configuration file syntax and options

@if hostname_matches foobar
# only read if hostname is ’foobar’
@else
# read if hostname is NOT ’foobar’
@fi

@if not hostname_matches foobar
# not read if hostname is ’foobar’
@fi

@if system_matches Linux:2.6.24-21-generic:i686
# only read if $(uname -s):$(uname -r):$(uname -m)
# matches Linux:2.6.24-21-generic:i686
@fi

@if !system_matches Linux:2.6.24-21-generic:i686
# not read if $(uname -s):$(uname -r):$(uname -m)
# matches Linux:2.6.24-21-generic:i686
@fi

C.2. Files to check

Allowed section headings (see Section 5.4.1> for more details) are:

[Attributes], [LogFiles], [GrowingLogFiles], [IgnoreAll], [IgnoreNone], [ReadOnly], [User0],
[User1], and [User2], and [User3], and [User4], and [Prelink]

Placing an entry under one of these headings will select the respective policy for that entry (see
Section 5.4.1>). Entries under the above section headings must be of the form:

dir=[optional numerical recursion depth]path

file=path

C.3. Severity of events

Section heading (see Section 4.1.1> for more details):

[EventSeverity]

Entries:

149



Appendix C. Configuration file syntax and options

SeverityReadOnly=severity

SeverityLogFiles=severity

SeverityGrowingLogs=severity

SeverityIgnoreNone=severity

SeverityIgnoreAll=severity

SeverityAttributes=severity

SeverityUser0=severity

SeverityUser1=severity

SeverityUser2=severity

SeverityUser3=severity

SeverityUser4=severity

SeverityPrelink=severity

SeverityFiles=severity

SeverityDirs=severity

SeverityNames=severity

severity may be one of none, debug, info, notice, warn, mark, err, crit, alert.

C.4. Logging thresholds

Section heading (see Section 4.3> for more details):

[Log]

150



Appendix C. Configuration file syntax and options

Entries:

MailSeverity=list of [optional specifier]threshold

PrintSeverity=list of [optional specifier]threshold

LogSeverity=list of [optional specifier]threshold

SyslogSeverity=list of [optional specifier]threshold

PreludeSeverity=list of [optional specifier]threshold

ExportSeverity=list of [optional specifier]threshold

ExternalSeverity=list of [optional specifier]threshold

DatabaseSeverity=list of [optional specifier]threshold

threshold may be one of none, debug, info, notice, warn, mark, err, crit, alert.

The optional specifier may be one of ’*’, ’!’, or ’=’, which are interpreted as ’all’, ’excluding’, and
’only’, respectively. Examples: specifying ’*’ is equal to specify ’debug’; specifying ’!*’ is equal to
specifying ’none’; ’info,!alert’ is the range from ’info’ to ’crit’; and ’info,!=mark’ is info and above,
but excluding ’mark’.

C.5. Watching login/logout events

Section heading:

[Utmp]

Entries:

LoginCheckActive=boolean — ’1’ to switch on, ’0’ to switch off.

LoginCheckInterval=seconds — Interval between checks.

SeverityLogin=severity — Severity for login events.

151



Appendix C. Configuration file syntax and options

SeverityLoginMulti=severity — Severity for multiple logins by same user.

SeverityLogout=severity — Severity for logout events.

C.6. Checking for kernel module rootkits

Section heading:

[Kernel]

Entries:

KernelCheckActive=boolean — ’true’ to switch on, ’false’ to switch off.

KernelCheckInterval=seconds — Interval between checks.

KernelCheckIDT=boolean — Check the Interrupt Descriptor Table (default true).

KernelCheckPCI=boolean — Check PCI expansion ROMs (default true).

SeverityKernel=severity — Severity for events.

KernelSystemCall = address — the address of system_call (grep system_call System.map)

KernelSyscallTable = address — the address of sys_call_table (grep ’ sys_call_table’
System.map)

KernelProcRoot = address — the address of proc_root (grep ’ proc_root$’ System.map)

KernelProcRootIops = address — the address of proc_root_inode_operations (grep
proc_root_inode_operations System.map)

KernelProcRootLookup = address — the address of proc_root_lookup (grep proc_root_lookup
System.map)

152



Appendix C. Configuration file syntax and options

C.7. Checking for SUID/SGID files

Section heading:

[SuidCheck]

Entries:

SuidCheckActive=boolean — ’1’ to switch on, ’0’ to switch off.

SuidCheckExclude=path — A directory (and its subdirectories) to exclude from the check. Only
one directory can be specified this way.

SuidCheckSchedule=schedule — Crontab-like schedule for checks.

SeveritySuidCheck=severity — Severity for events.

SuidCheckFps=fps — Limit files per seconds for SUID check.

SuidCheckNosuid=boolean — Check filesystems mounted as nosuid. Defaults to not.

SuidCheckQuarantineFiles=boolean — Whether to quarantine files. Defaults to not.

SuidCheckQuarantineMethod=0|1|2 — Quarantine method. Delete = 1, remove suid/sgid flags =
1, move to quarantine directory = 2. Defaults to 1 (remove suid/sgid flags).

SuidCheckQuarantineDelete=boolean — Whether to delete rather than truncate, if method 0
(delete) is chosen. Default is truncate.

C.8. Checking for mount options

Section heading:

[Mounts]

Entries:

153



Appendix C. Configuration file syntax and options

MountCheckActive=boolean — ’1’ to switch on, ’0’ to switch off.

MountCheckInterval=seconds — Interval between checks.

SeverityMountMissing=severity — Severity for missing mounts.

SeverityOptionMissing=severity — Severity for missing mount options.

CheckMount=/path [mount options] — Mount point to check. Mount options must be given
as comma-separated list, separated by a blank from the preceding mount point.

C.9. Checking for user files

Section heading:

[UserFiles]

Entries:

UserfilesActive=boolean — ’1’ to switch on, ’0’ to switch off.

UserfilesName=filename policy — Files to check for under each $HOME. Allowed values for
’policy’ are: allignore, attributes, logfiles, loggrow, noignore (default), readonly, user0, user1, user2,
user3, and user4.

UserfilesCheckUids=uid list — A list of UIDs where we want to check. The default is all.
Ranges (e.g. 100-500) are allowed. If there is an open range (e.g. 1000-), it must be last in the list.

C.10. Checking for hidden/fake/required processes

Section heading:

[ProcessCheck]

Entries:

ProcessCheckActive=boolean — ’true’ to switch on, ’false’ to switch off.

154



Appendix C. Configuration file syntax and options

SeverityProcessCheck=severity — Severity for events (default is crit).

ProcessCheckMinPID=integer — Minimum PID (default is 0).

ProcessCheckMaxPID=integer — Maximum PID (default is 32767).

ProcessCheckInterval=seconds — Interval between checks.

ProcessCheckExists=POSIX regular expression — A process that is required to run. Must
match a substring in a line of the ’ps’ output.

ProcessCheckPSPath=path — The path to ps (default: autodetected at compile time).

ProcessCheckPSArg=path — The argument to ps (default: autodetected at compile time). Note
that the first column must be the PID, except on Linux, where the format ’PID SPID ...’ is expected
(spid = thread id), as shown by ’ps -eT’.

C.11. Checking for open ports

Section heading:

[PortCheck]

Entries:

PortCheckActive=boolean — ’true’ to switch on, ’false’ to switch off.

SeverityPortCheck=severity — Severity for events (default is crit).

PortCheckRequired=interface:portlist — Services (open ports) that are required.

PortCheckOptional=interface:portlist — Services (open ports) that are optional (allowed,
but not required).

PortCheckIgnore=interface:portlist — Services (open ports) that should be ignored (no
reports for this port).

155



Appendix C. Configuration file syntax and options

PortCheckInterface=(list of) IP adress(es) — Additional interface to scan (up to 15
interfaces).

PortCheckInterval=seconds — Interval between checks (default 300).

PortCheckUDP=boolean — Whether to scan UDP ports as well (default yes).

C.12. Logfile monitoring/analysis

Section heading:

[Logmon]

LogmonActive=boolean — ’true’ to switch on, ’false’ to switch off.

LogmonSaveDir=/abslute/path sets the directory where checkpoint data for logfiles is stored
(default: same as for pid file).

LogmonClean=boolean delete old checkpoint data unmodified for 30 days or more (default: off).

LogmonInterval=seconds — Interval between checks (default 10).

LogmonWatch=TYPE:path[:format] — File to monitor.

LogmonHidePID=boolean — Suppress PID in syslog messages, ’true’ to switch on, ’false’ to
switch off.is an option

LogmonMarkSeverity=severity — Severity for reports on missing heartbeat messages if the
messages themselves are assigned to the ’trash’ queue (default: crit).

LogmonBurstThreshold=number — The number of repeated messages within 12 minutes that
must be exceeded to report a burst of repeated messages (default: 24).

LogmonBurstQueue=queue — Set the reporting queue for reporting bursts of similar log messages
(default: don’t report).

LogmonBurstCron=boolean — Whether to report also on bursts of repeated cron messages
(defaul: false).

156



Appendix C. Configuration file syntax and options

LogmonQueue=label:[interval]:(sum|report):severity[:alias] — defines an output
queue.

LogmonHost=(perl)regex — Causes the following rules to be applied only to entries for this
host(s).

LogmonEndHost — Explicitely ends a preceding LogmonHost directive.

LogmonGroup=(perl)regex — Causes the following rules to be applied only if the group regex
matches.

LogmonEndGroup — Explicitely ends a preceding LogmonGroup directive.

LogmonRule=queue_label:(perl)regex — matches a logfile entry against the provided
regular expression.

C.13. Database

Section heading:

[Database]

Entries:

SetDBHost=db_host — Host where the DB server runs (default: localhost). Should be numeric IP
address for PostgreSQL.

SetDBName=db_name — Name of the database (default: samhain).

SetDBTable=db_table — Name of the database table (default: log).

SetDBUser=db_user — Connect as this user (default: samhain).

SetDBPassword=db_password — Use this password (default: none).

SetDBServerTstamp=boolean — Log server timestamp for client messages (default: true).

UsePersistent=boolean — Use a persistent connection (default: true).

157



Appendix C. Configuration file syntax and options

AddToDBHash=field — Add a database field to the set of fields that are used for tagging the log
record with an MD5 hash.

C.14. Miscellaneous

Section heading:

[Misc]

Entries:

Daemon=boolean — Whether to become a daemon (default: no)

MessageHeader="\%S \%T \%F \%L \%C" — Specify custom format for message header.

VersionString=string — Set version string to include in file signature database (along with
hostname and date).

SetReverseLookup=boolean — If false, skip reverse lookups when connecting to a host known by
name rather than IP address.

HideSetup=boolean — Don’t log names of config/database files on startup.

SyslogFacility=LOG_xxx — Set syslog facility (default is LOG_AUTHPRIV).

SyslogMapStampTo=LOG_xxx — Set syslog priority for heartbeat messages (timestamps). Default
is LOG_ERR.

MACType=HASH-TIGER/HMAC-TIGER — Set type of message authentication code (HMAC). Must
be identical on client and server.

SetLoopTime=seconds — Interval between timestamp messages (60).

SetConsole=device — Set the console device (/dev/console).

MessageQueueActive=boolean — Use SysV IPC message queue (false).

158



Appendix C. Configuration file syntax and options

PreludeMapToInfo=list of samhain severities — The severities that should be mapped to
impact severity ’info’ in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeMapToLow=list of samhain severities — The severities that should be mapped to
impact severity ’low’ in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeMapToMedium=list of samhain severities — The severities that should be
mapped to impact severity ’medium’ in prelude reports (default: none). This option is only available
with libprelude 0.9.

PreludeMapToHigh=list of samhain severities — The severities that should be mapped
to impact severity ’high’ in prelude reports (default: none). This option is only available with
libprelude 0.9.

PreludeProfile=profile — Set the profile (sensor name) for use with the Prelude IDS. This option
is only available with libprelude 0.9. Default is ’samhain’ (prelude 0.9) or ’Samhain’ (prelude 0.8).

SetMailAddress=recepient — Add a recepient e-mail address.

SetMailAlias=listname:username@hostname — Add a list of recepient e-mail address.

SetAddrSeverity=severity — Defines a severity threshold for an individual recipient (list). Must
be a subset of the global MailSeverity setting. Applies to the last defined recipient (list).

SetMailFilterAnd=list — Defines a list of strings all of which must match a message, otherwise it
will not be mailed. Applies to the last defined recipient (list).

SetMailFilterOr=list — Defines a list of strings at least one of which must match a message,
otherwise it will not be mailed. Applies to the last defined recipient (list).

SetMailFilterNot=list — Defines a list of strings none of which should match a message,
otherwise it will not be mailed. Applies to the last defined recipient (list).

CloseAddress — Explicitely closes the definition of a recipient (list).

SetMailTime=seconds — Maximum time interval between mail messages (86400 sec).

SetMailNum=0 -- 16383 — Maximum number of pending mails on internal queue (10).

159



Appendix C. Configuration file syntax and options

SetMailRelay=IP address — The mail relay (for offsite mail; default: none).

MailSubject=string — Custom format for the email subject (none).

SetMailSender=string — Sender for the ’From:’ field.

SetMailPort=port number — Port number to use for SMTP (default: 25).

SamhainPath=path — The path of the process image.

SetBindAddress=IP address — The IP address (i.e. interface on multi-interface box) to use for
outgoing connections (e.g. e-mail).

SetTimeServer=IP address — The time server. Note that the simple ’time’ service (port 37/tcp)
is used.

TrustedUser=username(,username,..). — List of additional trusted users.

SetLogfilePath=AUTO or /path — Path to log file (AUTO to tack hostname on compiled-in path).

SetLockfilePath=AUTO or /path— Path to lock file (AUTO to tack hostname on compiled-in
path).

The following options are only relevant for standalone or client executables:

SetNiceLevel=-19..19 — Set scheduling priority during file check. — (see ’man nice’).

SetIOLimit=bps — Set IO limits (kilobytes per second) for file check.

SetDropCache=boolean — Drop checksummed files from cache (unless they were cached before).
Defaults to false for performance reasons.

SetFilecheckTime=seconds — Interval between file checks (600).

FileCheckScheduleOne=schedule— Crontab-like schedule for file checks.

UseRsrcCheck=boolean— Check the ..namedfork/rsrc file on Mac OS X (defaults to no since this
mechanism is deprecated by Apple).

160



Appendix C. Configuration file syntax and options

UseHardlinkCheck=boolean— Compare number of hardlinks to number of subdirectories for
directories.

HardlinkOffset=N :/path — Exception (use multiple times for multiple exceptions). N is offset
(actual - expected hardlinks) for /path.

AddOKChars=N1, N2, .. — List of acceptable characters (byte value(s)) for the check for weird
filenames. Nn may be hex (leading ’0x’: 0xNN), octal (leading zero: 0NNN), or decimal. Use ’all’
for all.

FilenamesAreUTF8=boolean — If set, samhain will check for invalid UTF-8 encoding and for
filenames ending in invisible characters.

IgnoreAdded=path_regex — Ignore if this file/directory is added/created.

IgnoreMissing=path_regex — Ignore if this file/directory is missing/deleted.

LooseDirCheck=boolean — Ignore changes of directory inodes if nothing but size and timestamps
have changed.

SkipChecksum=list of conditions — Skip checksumming if the list of condition holds true

FileType=definition — User-defined file type specification (to be used for the
SkipChecksum=... command).

ReportOnlyOnce=boolean — Report only once on a modified file (yes).

ReportFullDetail=boolean — Report in full detail on modified files (no).

UseLocalTime=boolean — Report file timestamps in local time rather than GMT (no). Do not use
this with Beltane.

ChecksumTest=none/init/update/check — The default action (default is none).

SetPrelinkPath=path — The path to the prelink binary (default is /usr/sbin/prelink).

SetPrelinkChecksum=checksum — The checksum of the prelink binary.

SetLogServer=IP address — The log server.

161



Appendix C. Configuration file syntax and options

SetServerPort=port number — The port on the log server (defaults to the compiled-in port,
which is 49777 unless redefined at compile time).

SetThrottle=milliseconds — An option to throttle the network throughput when downloading
the database from the server. The allowed maximum of 1000 msec throttles to about 64 kB/sec, less
is faster.

SetDatabasePath=AUTO or /path— Path to database (AUTO to tack hostname on compiled-in
path).

DigestAlgo=SHA1 or MD5 — Use SHA1 or MD5 instead of the TIGER checksum (default:
TIGER192).

RedefReadOnly=+XXX or -XXX — Add or subtract test XXX from the ReadOnly policy.

RedefAttributes=+XXX or -XXX — Add or subtract test XXX from the Attributes policy.

RedefLogFiles=+XXX or -XXX — Add or subtract test XXX from the LogFiles policy.

RedefGrowingLogFiles=-XXX or ~XXX — Add or subtract test XXX from the GrowingLogFiles
policy.

RedefIgnoreAll=+XXX or -XXX — Add or subtract test XXX from the IgnoreAll policy.

RedefIgnoreNone=+XXX or -XXX — Add or subtract test XXX from the IgnoreNone policy.

RedefUser0=+XXX or -XXX — Add or subtract test XXX from the User0 policy.

RedefUser1=+XXX or -XXX — Add or subtract test XXX from the User1 policy.

RedefUser2=+XXX or -XXX — Add or subtract test XXX from the User2 policy.

RedefUser3=+XXX or -XXX — Add or subtract test XXX from the User3 policy.

RedefUser4=+XXX or -XXX — Add or subtract test XXX from the User4 policy.

UseACLCheck=boolean — Check ACL policies for files.

UseSelinuxCheck=boolean — Check SELINUX attributes for files.

162



Appendix C. Configuration file syntax and options

The following options are only relevant for the server:

SetUseSocket=boolean — If unset, do not open the command socket (server only). This socket
allows to advise the server to transmit commands to clients as soon as they connect to the server next
time.

SetSocketAllowUid=UID — Which user can connect to the command socket. The default is 0 (root).

SetSocketPassword=password — Password (max. 14 chars, no ’@’) for password-based
authentication on the command socket (only if the OS does not support passing credentials via
sockets).

SetChrootDir=path — If set, chroot to this directory (server only).

SetStripDomain=boolean — Whether to strip the domain from the client hostname when logging
client messages (server only; default: yes).

SetClientFromAccept=boolean — If true, use client address as known to the communication
layer. Else (default) use client name as claimed by the client, try to verify against the address known
to the communication layer, and accept (with a warning message) even if this fails.

UseClientSeverity=boolean — If set to ’yes’, don’t assign a special severity (priority) to client
messages.

UseClientClass=boolean — If set to ’yes’, don’t assign a special class to client messages.

SetServerPort=port number — The port that the server should use for listening (default is 49777).

SetServerInterface=IP address — The IP address (i.e. interface on multi-interface box) that the
server should use for listening (default is all). Use INADDR_ANY to reset to all.

SeverityLookup=severity — Severity for name lookup errors when verifying (on the server side)
that the socket peer matches the hostname claimed by the client. See the preceding option.

UseSeparateLogs=boolean — If true, messages from different clients will be logged to separate
log files (the name of the client will be appended to the name of the main log file to construct the
logfile name). Default: false.

SetClientTimeLimit=seconds — Maximum time limit until next client message (server-only). If
no message is received from a client within that limit, the respective client will be reported as dead.

163



Appendix C. Configuration file syntax and options

SetConnectionTimeout=seconds — Timeout after which a currently active connection to a client
will be closed by the server (900 seconds). This timeout has the purpose to prevent bad clients from
hogging server resources.

SetUDPActive=boolean — yule 1.2.8+: Listen on 514/udp (syslog). Default: false.

Remarks: (i) root and the effective user are always trusted. (ii) If no time server is given, the local
host clock is used. (iii) If the path of the process image is given, the process image will be
checksummed at startup and exit, and both checksums compared.

C.15. External

Definition of an arbitrary number of external programs/scripts (see Chapter 7>). Section heading:

[External]

Entries:

OpenCommand=/full/path/to/program — Starts new command definition.

CloseCommand — Ends new command definition (optional syntactic sugar).

SetType=log/srv — Type/purpose of the program.

SetCommandline=list — The command line.

SetEnviron=KEY=value — Environment variable (can be repeated).

SetChecksum=TIGER checksum — Checksum of the program.

SetCredentials=username — User whose credentials shall be used.

SetFilterNot=list — Regular expression patterns not allowed in message.

SetFilterAnd=list — Regular expression patterns required (ALL) in message.

SetFilterOr=list — Regular expression patterns required (at least one) in message.

164



Appendix C. Configuration file syntax and options

SetDeadtime=seconds — Deadtime between consecutive calls.

SetDefault=boolean — Set default environment (HOME from /etc/passwd, SHELL=/bin/sh,
PATH=/sbin:/usr/sbin:/bin:/usr/bin).

C.16. Clients

This section is relevant for yule only. Section heading:

[Clients]

Entries must be of the form:

Client=hostname@salt@verifier

See Section 6.3> on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the host on which it runs.
Usually, this will be a fully qualified hostname, no numerical address. However, there is no method
that guarantees to yield the fully qualified hostname (it is not even guaranteed that a host has one ...).
The only way to know for sure is to set up the client, and check whether the connection is refused by
the server with a message like Connection attempt from unregistered host hostname In that case,
hostname is what you should use.

CAVEAT

Problems and oddities encountered in client/server setups (like client
messages from 127.0.0.1, server warnings about unknown/unresolved peer,
etc. are always (at least so far) due to incorrect configuration of the DNS or the
/etc/hosts file.

A surprisingly large number of hosts are not able to determine the own
hostname, or reverse lookup adresses on the own local network. Don’t bother
asking about such problems — fix your DNS.

165



Appendix D. List of database fields

The database may hold (i) internal message from yule, the log server, and (ii) client messages. The
latter result in two rows: one for the client message, and one for the server message recording the
arrival of the client message, the originating remote host, and the timestamp. The different message
types can be recognized by the log_ref field (see below).

Many database fields record details of files (see man stat), before (_old) and after (_new) a detected
modification. For some items, both numeric (iXXX) and string values are reported, because the
translation between both is host-specific. This allows to perform updates of the file signature
database(s) on the server side. Other fields are listed below. Basically, most of the fields supply
additional information for log_msg if relevant.

D.1. General

log_index

Unique index of the message (primary key).

log_ref

Zero for internal server messages, NULL for messages received from a client,
log_index(client_message) for server timestamp of client message.

log_host

The host where the message originates.

log_time

The timestamp of the message.

log_sev

The severity/priority of the message.

log_msg

The message itself.

log_hash

A checksum over the union of user-defineable fields.

entry_status

NEW for new entries. Used by the Beltane frontend to track the status of a message.

path

Path of a file (whenever a message refers to a file).

166



Appendix D. List of database fields

userid

UID of the current user if relevant (e.g. if access to a file fails).

grp

Name of a group (for messages reporting problems with a GID, e.g. no entry in /etc/group).

program

Name of the current process (startup message).

subroutine

Name of an internal subroutine (in messages reporting failure of a subroutine).

status

Exit status value of samhain.

hash

Checksum of configuration file (if gpg not used). Startup message.

path_data, hash_data

Path and checksum of data file (if gpg not used). Startup message.

key_uid, key_id

User ID and key id of GPG key used to sign the configuration file. Startup message.

key_uid_data

User ID of GPG key used to sign the data file (different keys for configuration and data file
cause program abort). Startup failure message.

peer

Address of a connecting host.

obj

Generic field to hold additional information. Occasionally used.

interface

Name of a library routine/interface (error messages).

dir

Name of a directory, if relevant.

linked_path

In reports about dangling symlinks.

port

Port number (in reports about connections errors).

167



Appendix D. List of database fields

service

Logging facility or remote service (failure reports).

D.2. Modules

module

Name of a samhain module (e.g. the module to watch login/logout events). Used in
initialization/error reports for a module.

return_code

Return code from a module. Used in initialization/error reports for a module.

syscall

ID of bad syscall. Kernel checking module.

ip

IP address. Login/logout watch. Also used in received syslog messages (see below).

tty

Terminal used. Login/logout watch.

time

Login/logout time. Also used in some other messages (e.g. time to complete file check).

fromhost

Host from which user is logged in. Login/logout watch.

D.3. Syslog

ip

IP of remote host received syslog reports. Also used in the login/logout watch module (see
above).

facility

Syslog facility for received syslog reports.

priority

Syslog priority for received syslog reports.

syslog_msg

Syslog message for received syslog reports.

168



Appendix E. List of recognized file types

Filetypes have hierarchical names of the form G1:G2:G3, and in the "match(filetype)" condition you
can specify filetypes as G1:G2:G3, or G1:G2 (less specific), or G1 (generic). The list of currently
(version 2.8.2) recognized filetypes comprises:

IMAGE:COMPRESSED:JPG
IMAGE:COMPRESSED:PNG
IMAGE:COMPRESSED:JPG
IMAGE:COMPRESSED:GIF
IMAGE:COMPRESSED:TIFF
IMAGE:COMPRESSED:PCX
IMAGE:RAW:BMP
IMAGE:RAW:XPM
IMAGE:SPECIAL:AUTOCAD
IMAGE:SPECIAL:COREL
IMAGE:SPECIAL:FITS
IMAGE:SPECIAL:VISIO
IMAGE:SPECIAL:DICM
IMAGE:SPECIAL:PHS
IMAGE:SPECIAL:XCF

MOVIE:COMPRESSED:RIFF
MOVIE:RAW:MOV
MOVIE:COMPRESSED:MPG
MOVIE:COMPRESSED:QT
MOVIE:COMPRESSED:FLI
MOVIE:COMPRESSED:FLASH
MOVIE:COMPRESSED:WMV

AUDIO:RAW:SND
AUDIO:RAW:EMOD
AUDIO:RAW:MOD
AUDIO:RAW:WAVE
AUDIO:RAW:DEC
AUDIO:STANDARD:MIDI
AUDIO:COMPRESSED:REAL
AUDIO:COMPRESSED:OGG
AUDIO:COMPRESSED:FLAC
AUDIO:COMPRESSED:MP3

ARCHIVE:COMPRESSED:LHA
ARCHIVE:COMPRESSED:RAR
ARCHIVE:COMPRESSED:ZIP
ARCHIVE:COMPRESSED:7Z
ARCHIVE:COMPRESSED:COMPRESS
ARCHIVE:COMPRESSED:GZIP
ARCHIVE:COMPRESSED:BZIP2
ARCHIVE:COMPRESSED:ARJ
ARCHIVE:COMPRESSED:HPAK
ARCHIVE:COMPRESSED:JAM

169



Appendix E. List of recognized file types

ARCHIVE:COMPRESSED:SQUISH
ARCHIVE:COMPRESSED:CAB
ARCHIVE:COMPRESSED:ZOO
ARCHIVE:COMPRESSED:XPK
ARCHIVE:PACKAGE:RPM
ARCHIVE:PACKAGE:DEB
ARCHIVE:UNIX:AR
ARCHIVE:UNIX:TAR

LIBRARY:JAVA:CLASS

DOCUMENT:OFFICE:WORD
DOCUMENT:OFFICE:EXCEL
DOCUMENT:OFFICE:WORD
DOCUMENT:OFFICE:ALL
DOCUMENT:ADOBE:PDF
DOCUMENT:ADOBE:EPS
DOCUMENT:STANDARD:RTF
DOCUMENT:ID:VCARD

EXECUTABLE:DOS:EXE
EXECUTABLE:DOS:COM
EXECUTABLE:UNIX:SHELL
EXECUTABLE:UNIX:ELF
EXECUTABLE:DOS:COM
EXECUTABLE:AMIGAOS:EXECUTABLE

DATABASE:ANY:ACCESS
DATABASE:ANY:MYSQL

170


	The Samhain Host Integrity Monitoring System
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Compiling and installing
	2.1. Overview
	2.2. Requirements
	2.3. Download and extract
	2.4. Configuring the source
	2.4.1. Some more configuration options

	2.5. Build
	2.6. Install
	2.6.1. Important make targets

	2.7. Customize
	2.8. Initialize the baseline database
	2.9. Run samhain
	2.10. Files and directory layout
	2.10.1. Trusted users and trusted paths
	2.10.2. Directory layout
	2.10.3. Runtime files
	2.10.3.1. Standalone or client
	2.10.3.2. Server

	2.10.4. Installed files
	2.10.4.1. Standalone or client
	2.10.4.2. Server


	2.11. The testsuite

	Chapter 3. General usage notes
	3.1. How to invoke
	3.2. Using daemontool (or similar utilities)
	3.3. Controlling the daemon
	3.4. Signals
	3.5. PID file
	3.6. Log file rotation
	3.7. Updating the file signature database
	3.8. Improving the signaltonoise ratio
	3.9. Runtime options: commandline configuration file
	3.10. Remarks on the dnmalloc allocator
	3.11. Support / Bugs / Problems

	Chapter 4. Configuration of logging facilities
	4.1. General
	4.1.1. Severity levels
	4.1.2. Classes

	4.2. Available logging facilities
	4.3. Activating logging facilities and filtering messages
	4.4. Email
	4.4.1. Email reports and their integrity

	4.5. Log file
	4.5.1. The log file and its integrity

	4.6. Log server
	4.6.1. Details

	4.7. External facilities
	4.8. Console
	4.9. Prelude
	4.9.1. Preludespecific commandline options
	4.9.2. Registering to a Prelude 0.9 manager
	4.9.3. Registering to a Prelude 0.8 manager

	4.10. Using samhain with nagios
	4.11. Syslog
	4.12. SQL Database
	4.12.1. Upgrade to samhain 2.3
	4.12.2. Upgrade to samhain 2.4.4
	4.12.3. MySQL configuration details


	Chapter 5. Configuring samhain, the host integrity monitor
	5.1. Usage overview
	5.2. Available checksum functions
	5.3. File signatures
	5.4. Defining file check policies: what, and how, to monitor
	5.4.1. Monitoring policies
	5.4.2. File/directory specification
	5.4.2.1. Rules

	5.4.3. Suppress messages about new/deleted files
	5.4.4. Dynamic database update (modified/disappeared/new files)
	5.4.5. Recursion depth(s)
	5.4.6. Hardlink check
	5.4.6.1. Specify exceptions for the hardlink check

	5.4.7. Check for weird filenames
	5.4.8. Support for prelink
	5.4.9. SELinux attributes and Posix ACLs
	5.4.10. Codes in messages about reported files
	5.4.11. Loose directory checking
	5.4.12. Storing the full content of a file
	5.4.13. Who made changes to a file?
	5.4.14. Skip checksumming for particular files
	5.4.14.1. Userdefined file types


	5.5. Excluding files and/or subdirectories (All except )
	5.6. Timing file checks
	5.6.1. Using a second schedule

	5.7. Initializing, updating, or checking
	5.8. The file signature database
	5.9. Checking the file system for SUID/SGID binaries
	5.9.1. Quarantine SUID/SGID files
	5.9.2. Configuration

	5.10. Detecting Kernel rootkits
	5.10.1. Configuration
	5.10.2. What is a kernel rootkit ?
	5.10.3. Implemented integrity checks
	5.10.4. Error messages

	5.11. Monitoring login/logout events
	5.12. Checking mounted filesystem policies
	5.13. Checking sensitive files owned by users
	5.14. Checking for hidden/fake/missing processes
	5.14.1. Example configuration

	5.15. Checking for open ports
	5.15.1. Options
	5.15.2. Example configuration

	5.16. Logfile monitoring/analysis
	5.16.1. Event Correlation
	5.16.1.1. Marking individual events to be correlated
	5.16.1.2. Correlating the marked events

	5.16.2. Reporting nonoccurence of an event
	5.16.3. Reporting bursts of similar, repeated events
	5.16.4. Options
	5.16.5. Example configuration

	5.17. Checking the Windows registry
	5.17.1. Options
	5.17.2. Example configuration

	5.18. Modules
	5.19. Performance tuning
	5.20. Storing the full content of a file (aka: WHAT has changed?)
	5.20.1. Example configuration
	5.20.2. Implementation details


	Chapter 6. Configuring yule, the log server
	6.1. General
	6.2. Important installation notes
	6.3. Registering a client
	6.4. Enabling logging to the server
	6.5. Enabling baseline database / configuration file download from the server
	6.5.1. Configuration file
	6.5.2. Database file

	6.6. Rules for logging of client messages
	6.7. Detecting 'dead' clients
	6.8. The HTML server status page
	6.9. Chroot
	6.10. Restrict access with libwrap (tcp wrappers)
	6.11. Sending commands to clients
	6.11.1. Communicating with the server
	6.11.2. Authenticating to the server

	6.12. Syslog logging
	6.13. Servertoserver relay
	6.14. Performance tuning

	Chapter 7. Hooks for External Programs
	7.1. Pipes
	7.2. System V message queue
	7.3. Calling external programs
	7.3.1. Example setup for paging


	Chapter 8. Additional Features Signed Configuration/Database Files
	8.1. The samhainadmin script

	Chapter 9. Additional Features Stealth
	9.1. Hiding the executable
	9.1.1. Using kernel modules to hide samhain (Linux/ix86 only)

	9.2. Packing the executable

	Chapter 10. Deployment to remote hosts
	10.1. Method A: The deployment system
	10.1.1. Requirements
	10.1.2. Layout of the deployment system
	10.1.2.1. The configs subdirectory
	10.1.2.2. The archpkg subdirectory

	10.1.3. Customizing the system
	10.1.3.1. Setting default options
	10.1.3.2. Adding support for an architecture
	10.1.3.3. Perarchitecture pre/postinstallation scripts
	10.1.3.4. Perhost runtime configuration

	10.1.4. Using the deploy.sh script
	10.1.4.1. General options

	10.1.5. deploy.sh info
	10.1.5.1. Specific options

	10.1.6. deploy.sh clean
	10.1.6.1. Specific options

	10.1.7. deploy.sh download
	10.1.7.1. Specific options

	10.1.8. deploy.sh checksrc
	10.1.8.1. Specific options

	10.1.9. deploy.sh build
	10.1.9.1. Specific options

	10.1.10. deploy.sh install
	10.1.10.1. Specific options

	10.1.11. deploy.sh uninstall
	10.1.11.1. Specific options

	10.1.12. Usage notes

	10.2. Method B: The native package manager
	10.2.1. Building an RPM
	10.2.1.1. Custom RPM
	10.2.1.2. Singlehost

	10.2.2. Building an HPUX package
	10.2.3. Building a Solaris package
	10.2.4. Building a Gentoo Linux package
	10.2.5. Building a Debian package


	Chapter 11. Security Design
	11.1. Usage
	11.2. Integrity of the samhain executable
	11.3. Client executable integrity
	11.4. The server
	11.5. General

	Appendix A. List of options for the ./configure script
	A.1. General
	A.2. Optional modules to perform additional checks
	A.3. OpenPGP Signatures on Configuration/Database Files
	A.4. Client/Server Connectivity
	A.5. Paths

	Appendix B. List of command line options
	B.1. General
	B.2. samhain
	B.3. yule

	Appendix C. Configuration file syntax and options
	C.1. General
	C.1.1. Shell expansion
	C.1.2. Conditionals

	C.2. Files to check
	C.3. Severity of events
	C.4. Logging thresholds
	C.5. Watching login/logout events
	C.6. Checking for kernel module rootkits
	C.7. Checking for SUID/SGID files
	C.8. Checking for mount options
	C.9. Checking for user files
	C.10. Checking for hidden/fake/required processes
	C.11. Checking for open ports
	C.12. Logfile monitoring/analysis
	C.13. Database
	C.14. Miscellaneous
	C.15. External
	C.16. Clients

	Appendix D. List of database fields
	D.1. General
	D.2. Modules
	D.3. Syslog

	Appendix E. List of recognized file types

