1 | /*
|
---|
2 | * zAVLTree.c: Source code for zAVLTrees.
|
---|
3 | * Copyright (C) 1998,2001 Michael H. Buselli
|
---|
4 | * This is version 0.1.3 (alpha).
|
---|
5 | * Generated from $Id: xAVLTree.c.sh,v 1.5 2001/06/07 06:58:28 cosine Exp $
|
---|
6 | *
|
---|
7 | * This library is free software; you can redistribute it and/or
|
---|
8 | * modify it under the terms of the GNU Library General Public
|
---|
9 | * License as published by the Free Software Foundation; either
|
---|
10 | * version 2 of the License, or (at your option) any later version.
|
---|
11 | *
|
---|
12 | * This library is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | * Library General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU Library General Public
|
---|
18 | * License along with this library; if not, write to the Free
|
---|
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
20 | *
|
---|
21 | * The author of this library can be reached at the following address:
|
---|
22 | * Michael H. Buselli
|
---|
23 | * 30051 N. Waukegan Rd. Apt. 103
|
---|
24 | * Lake Bluff, IL 60044-5412
|
---|
25 | *
|
---|
26 | * Or you can send email to <cosine@cosine.org>.
|
---|
27 | * The official web page for this product is:
|
---|
28 | * http://www.cosine.org/project/AVLTree/
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include <stdlib.h>
|
---|
32 | #include <string.h>
|
---|
33 | #include "zAVLTree.h"
|
---|
34 |
|
---|
35 | /* Wed Nov 23 17:57:42 CET 2005 rw: introduce third argument in
|
---|
36 | * zAVLCloseSearchNode() to avoid redundant strcmp
|
---|
37 | */
|
---|
38 | static zAVLNode *zAVLCloseSearchNode (zAVLTree const *avltree, zAVLKey key,
|
---|
39 | int * ok);
|
---|
40 | static void zAVLRebalanceNode (zAVLTree *avltree, zAVLNode *avlnode);
|
---|
41 | static void zAVLFreeBranch (zAVLNode *avlnode, void (freeitem)(void *item));
|
---|
42 | static void zAVLFillVacancy (zAVLTree *avltree,
|
---|
43 | zAVLNode *origparent, zAVLNode **superparent,
|
---|
44 | zAVLNode *left, zAVLNode *right);
|
---|
45 |
|
---|
46 | #define MAX(x, y) ((x) > (y) ? (x) : (y))
|
---|
47 | #define MIN(x, y) ((x) < (y) ? (x) : (y))
|
---|
48 | #define L_DEPTH(n) ((n)->left ? (n)->left->depth : 0)
|
---|
49 | #define R_DEPTH(n) ((n)->right ? (n)->right->depth : 0)
|
---|
50 | #define CALC_DEPTH(n) (MAX(L_DEPTH(n), R_DEPTH(n)) + 1)
|
---|
51 |
|
---|
52 | #define ZAVL_OK 1
|
---|
53 | #define ZAVL_NO 0
|
---|
54 |
|
---|
55 |
|
---|
56 | /*
|
---|
57 | * AVLAllocTree:
|
---|
58 | * Allocate memory for a new AVL tree and set the getkey function for
|
---|
59 | * that tree. The getkey function should take an item and return an
|
---|
60 | * AVLKey that is to be used for indexing this object in the AVL tree.
|
---|
61 | * On success, a pointer to the malloced AVLTree is returned. If there
|
---|
62 | * was a malloc failure, then NULL is returned.
|
---|
63 | */
|
---|
64 | zAVLTree *zAVLAllocTree (zAVLKey (*getkey)(void const *item))
|
---|
65 | {
|
---|
66 | zAVLTree *rc;
|
---|
67 |
|
---|
68 | rc = malloc(sizeof(zAVLTree));
|
---|
69 | if (rc == NULL)
|
---|
70 | return NULL;
|
---|
71 |
|
---|
72 | rc->top = NULL;
|
---|
73 | rc->count = 0;
|
---|
74 | rc->getkey = getkey;
|
---|
75 | return rc;
|
---|
76 | }
|
---|
77 |
|
---|
78 |
|
---|
79 | /*
|
---|
80 | * AVLFreeTree:
|
---|
81 | * Free all memory used by this AVL tree. If freeitem is not NULL, then
|
---|
82 | * it is assumed to be a destructor for the items reference in the AVL
|
---|
83 | * tree, and they are deleted as well.
|
---|
84 | */
|
---|
85 | void zAVLFreeTree (zAVLTree *avltree, void (freeitem)(void *item))
|
---|
86 | {
|
---|
87 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
88 | return;
|
---|
89 | if (avltree->top)
|
---|
90 | zAVLFreeBranch(avltree->top, freeitem);
|
---|
91 | free(avltree);
|
---|
92 | }
|
---|
93 |
|
---|
94 |
|
---|
95 | /*
|
---|
96 | * AVLInsert:
|
---|
97 | * Create a new node and insert an item there.
|
---|
98 | *
|
---|
99 | * Returns 0 on success,
|
---|
100 | * -1 on malloc failure,
|
---|
101 | * 3 if duplicate key.
|
---|
102 | */
|
---|
103 | int zAVLInsert (zAVLTree *avltree, void *item)
|
---|
104 | {
|
---|
105 | zAVLNode *newnode;
|
---|
106 | zAVLNode *node;
|
---|
107 | zAVLNode *balnode;
|
---|
108 | zAVLNode *nextbalnode;
|
---|
109 | int ok;
|
---|
110 |
|
---|
111 | newnode = malloc(sizeof(zAVLNode));
|
---|
112 | if (newnode == NULL)
|
---|
113 | return -1;
|
---|
114 |
|
---|
115 | newnode->key = avltree->getkey(item);
|
---|
116 | newnode->item = item;
|
---|
117 | newnode->depth = 1;
|
---|
118 | newnode->left = NULL;
|
---|
119 | newnode->right = NULL;
|
---|
120 | newnode->parent = NULL;
|
---|
121 |
|
---|
122 | if (avltree->top != NULL) {
|
---|
123 | node = zAVLCloseSearchNode(avltree, newnode->key, &ok);
|
---|
124 |
|
---|
125 | if (ok == ZAVL_OK) { /* exists already */
|
---|
126 | free(newnode);
|
---|
127 | return 3;
|
---|
128 | }
|
---|
129 |
|
---|
130 | newnode->parent = node;
|
---|
131 |
|
---|
132 | if (zAVLKey_cmp(avltree, newnode->key, node->key) < 0) {
|
---|
133 | node->left = newnode;
|
---|
134 | node->depth = CALC_DEPTH(node);
|
---|
135 | }
|
---|
136 |
|
---|
137 | else {
|
---|
138 | node->right = newnode;
|
---|
139 | node->depth = CALC_DEPTH(node);
|
---|
140 | }
|
---|
141 |
|
---|
142 | for (balnode = node->parent; balnode; balnode = nextbalnode) {
|
---|
143 | nextbalnode = balnode->parent;
|
---|
144 | zAVLRebalanceNode(avltree, balnode);
|
---|
145 | }
|
---|
146 | }
|
---|
147 |
|
---|
148 | else {
|
---|
149 | avltree->top = newnode;
|
---|
150 | }
|
---|
151 |
|
---|
152 | avltree->count++;
|
---|
153 | return 0;
|
---|
154 | }
|
---|
155 |
|
---|
156 |
|
---|
157 | /*
|
---|
158 | * zAVLSearch:
|
---|
159 | * Return a pointer to the item with the given key in the AVL tree. If
|
---|
160 | * no such item is in the tree, then NULL is returned.
|
---|
161 | */
|
---|
162 | void *zAVLSearch (zAVLTree const *avltree, zAVLKey key)
|
---|
163 | {
|
---|
164 | zAVLNode *node;
|
---|
165 | int ok;
|
---|
166 |
|
---|
167 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
168 | return NULL;
|
---|
169 |
|
---|
170 | node = zAVLCloseSearchNode(avltree, key, &ok);
|
---|
171 |
|
---|
172 | if (node && ok == ZAVL_OK)
|
---|
173 | return node->item;
|
---|
174 |
|
---|
175 | return NULL;
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | /*
|
---|
180 | * zAVLDelete:
|
---|
181 | * Deletes the node with the given key. Does not delete the item at
|
---|
182 | * that key. Returns 0 on success and -1 if a node with the given key
|
---|
183 | * does not exist.
|
---|
184 | */
|
---|
185 | int zAVLDelete (zAVLTree *avltree, zAVLKey key)
|
---|
186 | {
|
---|
187 | zAVLNode *avlnode;
|
---|
188 | zAVLNode *origparent;
|
---|
189 | zAVLNode **superparent;
|
---|
190 | int ok;
|
---|
191 |
|
---|
192 | avlnode = zAVLCloseSearchNode(avltree, key, &ok);
|
---|
193 | if (avlnode == NULL || ok == ZAVL_NO) /* does not exist */
|
---|
194 | return -1;
|
---|
195 |
|
---|
196 | origparent = avlnode->parent;
|
---|
197 |
|
---|
198 | if (origparent) {
|
---|
199 | if (zAVLKey_cmp(avltree, avlnode->key, avlnode->parent->key) < 0)
|
---|
200 | superparent = &(avlnode->parent->left);
|
---|
201 | else
|
---|
202 | superparent = &(avlnode->parent->right);
|
---|
203 | }
|
---|
204 | else
|
---|
205 | superparent = &(avltree->top);
|
---|
206 |
|
---|
207 | zAVLFillVacancy(avltree, origparent, superparent,
|
---|
208 | avlnode->left, avlnode->right);
|
---|
209 | free(avlnode);
|
---|
210 | avltree->count--;
|
---|
211 | return 0;
|
---|
212 | }
|
---|
213 |
|
---|
214 |
|
---|
215 | /*
|
---|
216 | * zAVLFirst:
|
---|
217 | * Initializes an zAVLCursor object and returns the item with the lowest
|
---|
218 | * key in the zAVLTree.
|
---|
219 | */
|
---|
220 | void *zAVLFirst (zAVLCursor *avlcursor, zAVLTree const *avltree)
|
---|
221 | {
|
---|
222 | const zAVLNode *avlnode;
|
---|
223 |
|
---|
224 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
225 | return NULL;
|
---|
226 |
|
---|
227 | avlcursor->avltree = avltree;
|
---|
228 |
|
---|
229 | if (avltree->top == NULL) {
|
---|
230 | avlcursor->curnode = NULL;
|
---|
231 | return NULL;
|
---|
232 | }
|
---|
233 |
|
---|
234 | for (avlnode = avltree->top;
|
---|
235 | avlnode->left != NULL;
|
---|
236 | avlnode = avlnode->left);
|
---|
237 | avlcursor->curnode = avlnode;
|
---|
238 | return avlnode->item;
|
---|
239 | }
|
---|
240 |
|
---|
241 |
|
---|
242 | /*
|
---|
243 | * zAVLNext:
|
---|
244 | * Called after an zAVLFirst() call, this returns the item with the least
|
---|
245 | * key that is greater than the last item returned either by zAVLFirst()
|
---|
246 | * or a previous invokation of this function.
|
---|
247 | */
|
---|
248 | void *zAVLNext (zAVLCursor *avlcursor)
|
---|
249 | {
|
---|
250 | const zAVLNode *avlnode;
|
---|
251 |
|
---|
252 | avlnode = avlcursor->curnode;
|
---|
253 |
|
---|
254 | if (avlnode->right != NULL) {
|
---|
255 | for (avlnode = avlnode->right;
|
---|
256 | avlnode->left != NULL;
|
---|
257 | avlnode = avlnode->left);
|
---|
258 | avlcursor->curnode = avlnode;
|
---|
259 | return avlnode->item;
|
---|
260 | }
|
---|
261 |
|
---|
262 | while (avlnode->parent && avlnode->parent->left != avlnode) {
|
---|
263 | avlnode = avlnode->parent;
|
---|
264 | }
|
---|
265 |
|
---|
266 | if (avlnode->parent == NULL) {
|
---|
267 | avlcursor->curnode = NULL;
|
---|
268 | return NULL;
|
---|
269 | }
|
---|
270 |
|
---|
271 | avlcursor->curnode = avlnode->parent;
|
---|
272 | return avlnode->parent->item;
|
---|
273 | }
|
---|
274 |
|
---|
275 |
|
---|
276 | /*
|
---|
277 | * zAVLCloseSearchNode:
|
---|
278 | * Return a pointer to the node closest to the given key.
|
---|
279 | * Returns NULL if the AVL tree is empty.
|
---|
280 | */
|
---|
281 | static zAVLNode *zAVLCloseSearchNode (zAVLTree const *avltree, zAVLKey key,
|
---|
282 | int * ok)
|
---|
283 | {
|
---|
284 | zAVLNode *node;
|
---|
285 |
|
---|
286 | *ok = ZAVL_NO;
|
---|
287 |
|
---|
288 | node = avltree->top;
|
---|
289 |
|
---|
290 | if (!node)
|
---|
291 | return NULL;
|
---|
292 |
|
---|
293 | for (;;) {
|
---|
294 | if (!zAVLKey_cmp(avltree, node->key, key))
|
---|
295 | {
|
---|
296 | *ok = ZAVL_OK;
|
---|
297 | return node;
|
---|
298 | }
|
---|
299 |
|
---|
300 | if (zAVLKey_cmp(avltree, node->key, key) < 0) {
|
---|
301 | if (node->right)
|
---|
302 | node = node->right;
|
---|
303 | else
|
---|
304 | return node;
|
---|
305 | }
|
---|
306 |
|
---|
307 | else {
|
---|
308 | if (node->left)
|
---|
309 | node = node->left;
|
---|
310 | else
|
---|
311 | return node;
|
---|
312 | }
|
---|
313 | }
|
---|
314 | }
|
---|
315 |
|
---|
316 |
|
---|
317 | /*
|
---|
318 | * zAVLRebalanceNode:
|
---|
319 | * Rebalances the AVL tree if one side becomes too heavy. This function
|
---|
320 | * assumes that both subtrees are AVL trees with consistant data. This
|
---|
321 | * function has the additional side effect of recalculating the depth of
|
---|
322 | * the tree at this node. It should be noted that at the return of this
|
---|
323 | * function, if a rebalance takes place, the top of this subtree is no
|
---|
324 | * longer going to be the same node.
|
---|
325 | */
|
---|
326 | static void zAVLRebalanceNode (zAVLTree *avltree, zAVLNode *avlnode)
|
---|
327 | {
|
---|
328 | long depthdiff;
|
---|
329 | zAVLNode *child;
|
---|
330 | zAVLNode *gchild;
|
---|
331 | zAVLNode *origparent;
|
---|
332 | zAVLNode **superparent;
|
---|
333 |
|
---|
334 | origparent = avlnode->parent;
|
---|
335 |
|
---|
336 | if (origparent) {
|
---|
337 | if (zAVLKey_cmp(avltree, avlnode->key, avlnode->parent->key) < 0)
|
---|
338 | superparent = &(avlnode->parent->left);
|
---|
339 | else
|
---|
340 | superparent = &(avlnode->parent->right);
|
---|
341 | }
|
---|
342 | else
|
---|
343 | superparent = &(avltree->top);
|
---|
344 |
|
---|
345 | depthdiff = R_DEPTH(avlnode) - L_DEPTH(avlnode);
|
---|
346 |
|
---|
347 | if (depthdiff <= -2) {
|
---|
348 | child = avlnode->left;
|
---|
349 |
|
---|
350 | if (L_DEPTH(child) >= R_DEPTH(child)) {
|
---|
351 | avlnode->left = child->right;
|
---|
352 | if (avlnode->left != NULL)
|
---|
353 | avlnode->left->parent = avlnode;
|
---|
354 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
355 | child->right = avlnode;
|
---|
356 | if (child->right != NULL)
|
---|
357 | child->right->parent = child;
|
---|
358 | child->depth = CALC_DEPTH(child);
|
---|
359 | *superparent = child;
|
---|
360 | child->parent = origparent;
|
---|
361 | }
|
---|
362 |
|
---|
363 | else {
|
---|
364 | gchild = child->right;
|
---|
365 | avlnode->left = gchild->right;
|
---|
366 | if (avlnode->left != NULL)
|
---|
367 | avlnode->left->parent = avlnode;
|
---|
368 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
369 | child->right = gchild->left;
|
---|
370 | if (child->right != NULL)
|
---|
371 | child->right->parent = child;
|
---|
372 | child->depth = CALC_DEPTH(child);
|
---|
373 | gchild->right = avlnode;
|
---|
374 | if (gchild->right != NULL)
|
---|
375 | gchild->right->parent = gchild;
|
---|
376 | gchild->left = child;
|
---|
377 | if (gchild->left != NULL)
|
---|
378 | gchild->left->parent = gchild;
|
---|
379 | gchild->depth = CALC_DEPTH(gchild);
|
---|
380 | *superparent = gchild;
|
---|
381 | gchild->parent = origparent;
|
---|
382 | }
|
---|
383 | }
|
---|
384 |
|
---|
385 | else if (depthdiff >= 2) {
|
---|
386 | child = avlnode->right;
|
---|
387 |
|
---|
388 | if (R_DEPTH(child) >= L_DEPTH(child)) {
|
---|
389 | avlnode->right = child->left;
|
---|
390 | if (avlnode->right != NULL)
|
---|
391 | avlnode->right->parent = avlnode;
|
---|
392 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
393 | child->left = avlnode;
|
---|
394 | if (child->left != NULL)
|
---|
395 | child->left->parent = child;
|
---|
396 | child->depth = CALC_DEPTH(child);
|
---|
397 | *superparent = child;
|
---|
398 | child->parent = origparent;
|
---|
399 | }
|
---|
400 |
|
---|
401 | else {
|
---|
402 | gchild = child->left;
|
---|
403 | avlnode->right = gchild->left;
|
---|
404 | if (avlnode->right != NULL)
|
---|
405 | avlnode->right->parent = avlnode;
|
---|
406 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
407 | child->left = gchild->right;
|
---|
408 | if (child->left != NULL)
|
---|
409 | child->left->parent = child;
|
---|
410 | child->depth = CALC_DEPTH(child);
|
---|
411 | gchild->left = avlnode;
|
---|
412 | if (gchild->left != NULL)
|
---|
413 | gchild->left->parent = gchild;
|
---|
414 | gchild->right = child;
|
---|
415 | if (gchild->right != NULL)
|
---|
416 | gchild->right->parent = gchild;
|
---|
417 | gchild->depth = CALC_DEPTH(gchild);
|
---|
418 | *superparent = gchild;
|
---|
419 | gchild->parent = origparent;
|
---|
420 | }
|
---|
421 | }
|
---|
422 |
|
---|
423 | else {
|
---|
424 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
425 | }
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | /*
|
---|
430 | * zAVLFreeBranch:
|
---|
431 | * Free memory used by this node and its item. If the freeitem argument
|
---|
432 | * is not NULL, then that function is called on the items to free their
|
---|
433 | * memory as well. In other words, the freeitem function is a
|
---|
434 | * destructor for the items in the tree.
|
---|
435 | */
|
---|
436 | static void zAVLFreeBranch (zAVLNode *avlnode, void (freeitem)(void *item))
|
---|
437 | {
|
---|
438 | if (avlnode->left)
|
---|
439 | zAVLFreeBranch(avlnode->left, freeitem);
|
---|
440 | if (avlnode->right)
|
---|
441 | zAVLFreeBranch(avlnode->right, freeitem);
|
---|
442 | if (freeitem)
|
---|
443 | freeitem(avlnode->item);
|
---|
444 | free(avlnode);
|
---|
445 | }
|
---|
446 |
|
---|
447 |
|
---|
448 | /*
|
---|
449 | * zAVLFillVacancy:
|
---|
450 | * Given a vacancy in the AVL tree by it's parent, children, and parent
|
---|
451 | * component pointer, fill that vacancy.
|
---|
452 | */
|
---|
453 | static void zAVLFillVacancy (zAVLTree *avltree,
|
---|
454 | zAVLNode *origparent, zAVLNode **superparent,
|
---|
455 | zAVLNode *left, zAVLNode *right)
|
---|
456 | {
|
---|
457 | zAVLNode *avlnode;
|
---|
458 | zAVLNode *balnode;
|
---|
459 | zAVLNode *nextbalnode;
|
---|
460 |
|
---|
461 | if (left == NULL) {
|
---|
462 | if (right)
|
---|
463 | right->parent = origparent;
|
---|
464 |
|
---|
465 | *superparent = right;
|
---|
466 | balnode = origparent;
|
---|
467 | }
|
---|
468 |
|
---|
469 | else {
|
---|
470 | for (avlnode = left; avlnode->right != NULL; avlnode = avlnode->right);
|
---|
471 |
|
---|
472 | if (avlnode == left) {
|
---|
473 | balnode = avlnode;
|
---|
474 | }
|
---|
475 | else {
|
---|
476 | balnode = avlnode->parent;
|
---|
477 | balnode->right = avlnode->left;
|
---|
478 | if (balnode->right != NULL)
|
---|
479 | balnode->right->parent = balnode;
|
---|
480 | avlnode->left = left;
|
---|
481 | left->parent = avlnode;
|
---|
482 | }
|
---|
483 |
|
---|
484 | avlnode->right = right;
|
---|
485 | if (right != NULL)
|
---|
486 | right->parent = avlnode;
|
---|
487 | *superparent = avlnode;
|
---|
488 | avlnode->parent = origparent;
|
---|
489 | }
|
---|
490 |
|
---|
491 | for (; balnode; balnode = nextbalnode) {
|
---|
492 | nextbalnode = balnode->parent;
|
---|
493 | zAVLRebalanceNode(avltree, balnode);
|
---|
494 | }
|
---|
495 | }
|
---|