[1] | 1 | /*
|
---|
| 2 | * zAVLTree.c: Source code for zAVLTrees.
|
---|
| 3 | * Copyright (C) 1998,2001 Michael H. Buselli
|
---|
| 4 | * This is version 0.1.3 (alpha).
|
---|
| 5 | * Generated from $Id: xAVLTree.c.sh,v 1.5 2001/06/07 06:58:28 cosine Exp $
|
---|
| 6 | *
|
---|
| 7 | * This library is free software; you can redistribute it and/or
|
---|
| 8 | * modify it under the terms of the GNU Library General Public
|
---|
| 9 | * License as published by the Free Software Foundation; either
|
---|
| 10 | * version 2 of the License, or (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * This library is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
| 15 | * Library General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU Library General Public
|
---|
| 18 | * License along with this library; if not, write to the Free
|
---|
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
| 20 | *
|
---|
| 21 | * The author of this library can be reached at the following address:
|
---|
| 22 | * Michael H. Buselli
|
---|
| 23 | * 30051 N. Waukegan Rd. Apt. 103
|
---|
| 24 | * Lake Bluff, IL 60044-5412
|
---|
| 25 | *
|
---|
| 26 | * Or you can send email to <cosine@cosine.org>.
|
---|
| 27 | * The official web page for this product is:
|
---|
| 28 | * http://www.cosine.org/project/AVLTree/
|
---|
| 29 | */
|
---|
| 30 |
|
---|
| 31 | #include <stdlib.h>
|
---|
| 32 | #include <string.h>
|
---|
| 33 | #include "zAVLTree.h"
|
---|
| 34 |
|
---|
| 35 | /* Wed Nov 23 17:57:42 CET 2005 rw: introduce third argument in
|
---|
| 36 | * zAVLCloseSearchNode() to avoid redundant strcmp
|
---|
| 37 | */
|
---|
| 38 | static zAVLNode *zAVLCloseSearchNode (zAVLTree const *avltree, zAVLKey key,
|
---|
| 39 | int * ok);
|
---|
| 40 | static void zAVLRebalanceNode (zAVLTree *avltree, zAVLNode *avlnode);
|
---|
| 41 | static void zAVLFreeBranch (zAVLNode *avlnode, void (freeitem)(void *item));
|
---|
| 42 | static void zAVLFillVacancy (zAVLTree *avltree,
|
---|
| 43 | zAVLNode *origparent, zAVLNode **superparent,
|
---|
| 44 | zAVLNode *left, zAVLNode *right);
|
---|
| 45 |
|
---|
| 46 | #define MAX(x, y) ((x) > (y) ? (x) : (y))
|
---|
| 47 | #define MIN(x, y) ((x) < (y) ? (x) : (y))
|
---|
| 48 | #define L_DEPTH(n) ((n)->left ? (n)->left->depth : 0)
|
---|
| 49 | #define R_DEPTH(n) ((n)->right ? (n)->right->depth : 0)
|
---|
| 50 | #define CALC_DEPTH(n) (MAX(L_DEPTH(n), R_DEPTH(n)) + 1)
|
---|
| 51 |
|
---|
| 52 | #define ZAVL_OK 1
|
---|
| 53 | #define ZAVL_NO 0
|
---|
| 54 |
|
---|
[363] | 55 | /* The comparison function. Was a macro, but this allows for more
|
---|
| 56 | * flexibility (non-string keys). The key is a (void *) now, and
|
---|
| 57 | * the type is stored in the zAVLTree struct. Oct 21, 2011, rw
|
---|
| 58 | */
|
---|
| 59 | static int zAVLKey_cmp(const zAVLTree * tree, zAVLKey a, zAVLKey b)
|
---|
| 60 | {
|
---|
| 61 | if (tree->keytype == zAVL_KEY_STRING)
|
---|
| 62 | {
|
---|
| 63 | return (strcmp((char*)a, (char *)b));
|
---|
| 64 | }
|
---|
| 65 | else /* zAVL_KEY_INT */
|
---|
| 66 | {
|
---|
| 67 | int x = *((int *)a);
|
---|
| 68 | int y = *((int *)b);
|
---|
[1] | 69 |
|
---|
[363] | 70 | if (x > y) return 1;
|
---|
| 71 | else if (x < y) return -1;
|
---|
| 72 | else return 0;
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
[1] | 76 | /*
|
---|
| 77 | * AVLAllocTree:
|
---|
| 78 | * Allocate memory for a new AVL tree and set the getkey function for
|
---|
| 79 | * that tree. The getkey function should take an item and return an
|
---|
| 80 | * AVLKey that is to be used for indexing this object in the AVL tree.
|
---|
| 81 | * On success, a pointer to the malloced AVLTree is returned. If there
|
---|
| 82 | * was a malloc failure, then NULL is returned.
|
---|
| 83 | */
|
---|
[363] | 84 | zAVLTree *zAVLAllocTree (zAVLKey (*getkey)(void const *item), int keytype)
|
---|
[1] | 85 | {
|
---|
| 86 | zAVLTree *rc;
|
---|
| 87 |
|
---|
| 88 | rc = malloc(sizeof(zAVLTree));
|
---|
| 89 | if (rc == NULL)
|
---|
| 90 | return NULL;
|
---|
| 91 |
|
---|
| 92 | rc->top = NULL;
|
---|
| 93 | rc->count = 0;
|
---|
| 94 | rc->getkey = getkey;
|
---|
[363] | 95 | rc->keytype = keytype;
|
---|
[1] | 96 | return rc;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 | /*
|
---|
| 101 | * AVLFreeTree:
|
---|
| 102 | * Free all memory used by this AVL tree. If freeitem is not NULL, then
|
---|
| 103 | * it is assumed to be a destructor for the items reference in the AVL
|
---|
| 104 | * tree, and they are deleted as well.
|
---|
| 105 | */
|
---|
| 106 | void zAVLFreeTree (zAVLTree *avltree, void (freeitem)(void *item))
|
---|
| 107 | {
|
---|
| 108 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
| 109 | return;
|
---|
| 110 | if (avltree->top)
|
---|
| 111 | zAVLFreeBranch(avltree->top, freeitem);
|
---|
| 112 | free(avltree);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 |
|
---|
| 116 | /*
|
---|
| 117 | * AVLInsert:
|
---|
| 118 | * Create a new node and insert an item there.
|
---|
| 119 | *
|
---|
| 120 | * Returns 0 on success,
|
---|
| 121 | * -1 on malloc failure,
|
---|
| 122 | * 3 if duplicate key.
|
---|
| 123 | */
|
---|
| 124 | int zAVLInsert (zAVLTree *avltree, void *item)
|
---|
| 125 | {
|
---|
| 126 | zAVLNode *newnode;
|
---|
| 127 | zAVLNode *node;
|
---|
| 128 | zAVLNode *balnode;
|
---|
| 129 | zAVLNode *nextbalnode;
|
---|
| 130 | int ok;
|
---|
| 131 |
|
---|
| 132 | newnode = malloc(sizeof(zAVLNode));
|
---|
| 133 | if (newnode == NULL)
|
---|
| 134 | return -1;
|
---|
| 135 |
|
---|
| 136 | newnode->key = avltree->getkey(item);
|
---|
| 137 | newnode->item = item;
|
---|
| 138 | newnode->depth = 1;
|
---|
| 139 | newnode->left = NULL;
|
---|
| 140 | newnode->right = NULL;
|
---|
| 141 | newnode->parent = NULL;
|
---|
| 142 |
|
---|
| 143 | if (avltree->top != NULL) {
|
---|
| 144 | node = zAVLCloseSearchNode(avltree, newnode->key, &ok);
|
---|
| 145 |
|
---|
[16] | 146 | if (ok == ZAVL_OK) { /* exists already */
|
---|
[1] | 147 | free(newnode);
|
---|
| 148 | return 3;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | newnode->parent = node;
|
---|
| 152 |
|
---|
| 153 | if (zAVLKey_cmp(avltree, newnode->key, node->key) < 0) {
|
---|
| 154 | node->left = newnode;
|
---|
| 155 | node->depth = CALC_DEPTH(node);
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | else {
|
---|
| 159 | node->right = newnode;
|
---|
| 160 | node->depth = CALC_DEPTH(node);
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | for (balnode = node->parent; balnode; balnode = nextbalnode) {
|
---|
| 164 | nextbalnode = balnode->parent;
|
---|
| 165 | zAVLRebalanceNode(avltree, balnode);
|
---|
| 166 | }
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | else {
|
---|
| 170 | avltree->top = newnode;
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | avltree->count++;
|
---|
| 174 | return 0;
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | /*
|
---|
| 179 | * zAVLSearch:
|
---|
| 180 | * Return a pointer to the item with the given key in the AVL tree. If
|
---|
| 181 | * no such item is in the tree, then NULL is returned.
|
---|
| 182 | */
|
---|
| 183 | void *zAVLSearch (zAVLTree const *avltree, zAVLKey key)
|
---|
| 184 | {
|
---|
| 185 | zAVLNode *node;
|
---|
| 186 | int ok;
|
---|
| 187 |
|
---|
| 188 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
| 189 | return NULL;
|
---|
| 190 |
|
---|
| 191 | node = zAVLCloseSearchNode(avltree, key, &ok);
|
---|
| 192 |
|
---|
| 193 | if (node && ok == ZAVL_OK)
|
---|
| 194 | return node->item;
|
---|
| 195 |
|
---|
| 196 | return NULL;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 |
|
---|
| 200 | /*
|
---|
| 201 | * zAVLDelete:
|
---|
| 202 | * Deletes the node with the given key. Does not delete the item at
|
---|
| 203 | * that key. Returns 0 on success and -1 if a node with the given key
|
---|
| 204 | * does not exist.
|
---|
| 205 | */
|
---|
| 206 | int zAVLDelete (zAVLTree *avltree, zAVLKey key)
|
---|
| 207 | {
|
---|
| 208 | zAVLNode *avlnode;
|
---|
| 209 | zAVLNode *origparent;
|
---|
| 210 | zAVLNode **superparent;
|
---|
| 211 | int ok;
|
---|
| 212 |
|
---|
| 213 | avlnode = zAVLCloseSearchNode(avltree, key, &ok);
|
---|
[16] | 214 | if (avlnode == NULL || ok == ZAVL_NO) /* does not exist */
|
---|
[1] | 215 | return -1;
|
---|
| 216 |
|
---|
| 217 | origparent = avlnode->parent;
|
---|
| 218 |
|
---|
| 219 | if (origparent) {
|
---|
| 220 | if (zAVLKey_cmp(avltree, avlnode->key, avlnode->parent->key) < 0)
|
---|
| 221 | superparent = &(avlnode->parent->left);
|
---|
| 222 | else
|
---|
| 223 | superparent = &(avlnode->parent->right);
|
---|
| 224 | }
|
---|
| 225 | else
|
---|
| 226 | superparent = &(avltree->top);
|
---|
| 227 |
|
---|
| 228 | zAVLFillVacancy(avltree, origparent, superparent,
|
---|
| 229 | avlnode->left, avlnode->right);
|
---|
| 230 | free(avlnode);
|
---|
| 231 | avltree->count--;
|
---|
| 232 | return 0;
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 |
|
---|
| 236 | /*
|
---|
| 237 | * zAVLFirst:
|
---|
| 238 | * Initializes an zAVLCursor object and returns the item with the lowest
|
---|
| 239 | * key in the zAVLTree.
|
---|
| 240 | */
|
---|
| 241 | void *zAVLFirst (zAVLCursor *avlcursor, zAVLTree const *avltree)
|
---|
| 242 | {
|
---|
| 243 | const zAVLNode *avlnode;
|
---|
| 244 |
|
---|
| 245 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
| 246 | return NULL;
|
---|
| 247 |
|
---|
| 248 | avlcursor->avltree = avltree;
|
---|
| 249 |
|
---|
| 250 | if (avltree->top == NULL) {
|
---|
| 251 | avlcursor->curnode = NULL;
|
---|
| 252 | return NULL;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | for (avlnode = avltree->top;
|
---|
| 256 | avlnode->left != NULL;
|
---|
| 257 | avlnode = avlnode->left);
|
---|
| 258 | avlcursor->curnode = avlnode;
|
---|
| 259 | return avlnode->item;
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 |
|
---|
| 263 | /*
|
---|
| 264 | * zAVLNext:
|
---|
| 265 | * Called after an zAVLFirst() call, this returns the item with the least
|
---|
| 266 | * key that is greater than the last item returned either by zAVLFirst()
|
---|
| 267 | * or a previous invokation of this function.
|
---|
| 268 | */
|
---|
| 269 | void *zAVLNext (zAVLCursor *avlcursor)
|
---|
| 270 | {
|
---|
| 271 | const zAVLNode *avlnode;
|
---|
| 272 |
|
---|
| 273 | avlnode = avlcursor->curnode;
|
---|
| 274 |
|
---|
| 275 | if (avlnode->right != NULL) {
|
---|
| 276 | for (avlnode = avlnode->right;
|
---|
| 277 | avlnode->left != NULL;
|
---|
| 278 | avlnode = avlnode->left);
|
---|
| 279 | avlcursor->curnode = avlnode;
|
---|
| 280 | return avlnode->item;
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | while (avlnode->parent && avlnode->parent->left != avlnode) {
|
---|
| 284 | avlnode = avlnode->parent;
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | if (avlnode->parent == NULL) {
|
---|
| 288 | avlcursor->curnode = NULL;
|
---|
| 289 | return NULL;
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | avlcursor->curnode = avlnode->parent;
|
---|
| 293 | return avlnode->parent->item;
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 |
|
---|
| 297 | /*
|
---|
| 298 | * zAVLCloseSearchNode:
|
---|
| 299 | * Return a pointer to the node closest to the given key.
|
---|
| 300 | * Returns NULL if the AVL tree is empty.
|
---|
| 301 | */
|
---|
| 302 | static zAVLNode *zAVLCloseSearchNode (zAVLTree const *avltree, zAVLKey key,
|
---|
| 303 | int * ok)
|
---|
| 304 | {
|
---|
| 305 | zAVLNode *node;
|
---|
| 306 |
|
---|
| 307 | *ok = ZAVL_NO;
|
---|
| 308 |
|
---|
| 309 | node = avltree->top;
|
---|
| 310 |
|
---|
| 311 | if (!node)
|
---|
| 312 | return NULL;
|
---|
| 313 |
|
---|
| 314 | for (;;) {
|
---|
| 315 | if (!zAVLKey_cmp(avltree, node->key, key))
|
---|
| 316 | {
|
---|
| 317 | *ok = ZAVL_OK;
|
---|
| 318 | return node;
|
---|
| 319 | }
|
---|
| 320 |
|
---|
| 321 | if (zAVLKey_cmp(avltree, node->key, key) < 0) {
|
---|
| 322 | if (node->right)
|
---|
| 323 | node = node->right;
|
---|
| 324 | else
|
---|
| 325 | return node;
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 | else {
|
---|
| 329 | if (node->left)
|
---|
| 330 | node = node->left;
|
---|
| 331 | else
|
---|
| 332 | return node;
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 |
|
---|
| 337 |
|
---|
| 338 | /*
|
---|
| 339 | * zAVLRebalanceNode:
|
---|
| 340 | * Rebalances the AVL tree if one side becomes too heavy. This function
|
---|
| 341 | * assumes that both subtrees are AVL trees with consistant data. This
|
---|
| 342 | * function has the additional side effect of recalculating the depth of
|
---|
| 343 | * the tree at this node. It should be noted that at the return of this
|
---|
| 344 | * function, if a rebalance takes place, the top of this subtree is no
|
---|
| 345 | * longer going to be the same node.
|
---|
| 346 | */
|
---|
| 347 | static void zAVLRebalanceNode (zAVLTree *avltree, zAVLNode *avlnode)
|
---|
| 348 | {
|
---|
| 349 | long depthdiff;
|
---|
| 350 | zAVLNode *child;
|
---|
| 351 | zAVLNode *gchild;
|
---|
| 352 | zAVLNode *origparent;
|
---|
| 353 | zAVLNode **superparent;
|
---|
| 354 |
|
---|
| 355 | origparent = avlnode->parent;
|
---|
| 356 |
|
---|
| 357 | if (origparent) {
|
---|
| 358 | if (zAVLKey_cmp(avltree, avlnode->key, avlnode->parent->key) < 0)
|
---|
| 359 | superparent = &(avlnode->parent->left);
|
---|
| 360 | else
|
---|
| 361 | superparent = &(avlnode->parent->right);
|
---|
| 362 | }
|
---|
| 363 | else
|
---|
| 364 | superparent = &(avltree->top);
|
---|
| 365 |
|
---|
| 366 | depthdiff = R_DEPTH(avlnode) - L_DEPTH(avlnode);
|
---|
| 367 |
|
---|
[383] | 368 | if (depthdiff <= -2 && avlnode->left) {
|
---|
[1] | 369 | child = avlnode->left;
|
---|
| 370 |
|
---|
| 371 | if (L_DEPTH(child) >= R_DEPTH(child)) {
|
---|
| 372 | avlnode->left = child->right;
|
---|
| 373 | if (avlnode->left != NULL)
|
---|
| 374 | avlnode->left->parent = avlnode;
|
---|
| 375 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
| 376 | child->right = avlnode;
|
---|
| 377 | if (child->right != NULL)
|
---|
| 378 | child->right->parent = child;
|
---|
| 379 | child->depth = CALC_DEPTH(child);
|
---|
| 380 | *superparent = child;
|
---|
| 381 | child->parent = origparent;
|
---|
| 382 | }
|
---|
| 383 |
|
---|
| 384 | else {
|
---|
| 385 | gchild = child->right;
|
---|
[383] | 386 | if (gchild)
|
---|
| 387 | {
|
---|
| 388 | avlnode->left = gchild->right;
|
---|
| 389 | if (avlnode->left != NULL)
|
---|
| 390 | avlnode->left->parent = avlnode;
|
---|
| 391 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
| 392 | child->right = gchild->left;
|
---|
| 393 | if (child->right != NULL)
|
---|
| 394 | child->right->parent = child;
|
---|
| 395 | child->depth = CALC_DEPTH(child);
|
---|
| 396 | gchild->right = avlnode;
|
---|
| 397 | if (gchild->right != NULL)
|
---|
| 398 | gchild->right->parent = gchild;
|
---|
| 399 | gchild->left = child;
|
---|
| 400 | if (gchild->left != NULL)
|
---|
| 401 | gchild->left->parent = gchild;
|
---|
| 402 | gchild->depth = CALC_DEPTH(gchild);
|
---|
| 403 | *superparent = gchild;
|
---|
| 404 | gchild->parent = origparent;
|
---|
| 405 | }
|
---|
[1] | 406 | }
|
---|
| 407 | }
|
---|
| 408 |
|
---|
[383] | 409 | else if (depthdiff >= 2 && avlnode->right) {
|
---|
[1] | 410 | child = avlnode->right;
|
---|
| 411 |
|
---|
| 412 | if (R_DEPTH(child) >= L_DEPTH(child)) {
|
---|
| 413 | avlnode->right = child->left;
|
---|
| 414 | if (avlnode->right != NULL)
|
---|
| 415 | avlnode->right->parent = avlnode;
|
---|
| 416 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
| 417 | child->left = avlnode;
|
---|
| 418 | if (child->left != NULL)
|
---|
| 419 | child->left->parent = child;
|
---|
| 420 | child->depth = CALC_DEPTH(child);
|
---|
| 421 | *superparent = child;
|
---|
| 422 | child->parent = origparent;
|
---|
| 423 | }
|
---|
| 424 |
|
---|
| 425 | else {
|
---|
| 426 | gchild = child->left;
|
---|
[383] | 427 | if (gchild)
|
---|
| 428 | {
|
---|
| 429 | avlnode->right = gchild->left;
|
---|
| 430 | if (avlnode->right != NULL)
|
---|
| 431 | avlnode->right->parent = avlnode;
|
---|
| 432 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
| 433 | child->left = gchild->right;
|
---|
| 434 | if (child->left != NULL)
|
---|
| 435 | child->left->parent = child;
|
---|
| 436 | child->depth = CALC_DEPTH(child);
|
---|
| 437 | gchild->left = avlnode;
|
---|
| 438 | if (gchild->left != NULL)
|
---|
| 439 | gchild->left->parent = gchild;
|
---|
| 440 | gchild->right = child;
|
---|
| 441 | if (gchild->right != NULL)
|
---|
| 442 | gchild->right->parent = gchild;
|
---|
| 443 | gchild->depth = CALC_DEPTH(gchild);
|
---|
| 444 | *superparent = gchild;
|
---|
| 445 | gchild->parent = origparent;
|
---|
| 446 | }
|
---|
[1] | 447 | }
|
---|
| 448 | }
|
---|
| 449 |
|
---|
| 450 | else {
|
---|
| 451 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
| 452 | }
|
---|
| 453 | }
|
---|
| 454 |
|
---|
| 455 |
|
---|
| 456 | /*
|
---|
| 457 | * zAVLFreeBranch:
|
---|
| 458 | * Free memory used by this node and its item. If the freeitem argument
|
---|
| 459 | * is not NULL, then that function is called on the items to free their
|
---|
| 460 | * memory as well. In other words, the freeitem function is a
|
---|
| 461 | * destructor for the items in the tree.
|
---|
| 462 | */
|
---|
| 463 | static void zAVLFreeBranch (zAVLNode *avlnode, void (freeitem)(void *item))
|
---|
| 464 | {
|
---|
| 465 | if (avlnode->left)
|
---|
| 466 | zAVLFreeBranch(avlnode->left, freeitem);
|
---|
| 467 | if (avlnode->right)
|
---|
| 468 | zAVLFreeBranch(avlnode->right, freeitem);
|
---|
| 469 | if (freeitem)
|
---|
| 470 | freeitem(avlnode->item);
|
---|
| 471 | free(avlnode);
|
---|
| 472 | }
|
---|
| 473 |
|
---|
| 474 |
|
---|
| 475 | /*
|
---|
| 476 | * zAVLFillVacancy:
|
---|
| 477 | * Given a vacancy in the AVL tree by it's parent, children, and parent
|
---|
| 478 | * component pointer, fill that vacancy.
|
---|
| 479 | */
|
---|
| 480 | static void zAVLFillVacancy (zAVLTree *avltree,
|
---|
| 481 | zAVLNode *origparent, zAVLNode **superparent,
|
---|
| 482 | zAVLNode *left, zAVLNode *right)
|
---|
| 483 | {
|
---|
| 484 | zAVLNode *avlnode;
|
---|
| 485 | zAVLNode *balnode;
|
---|
| 486 | zAVLNode *nextbalnode;
|
---|
| 487 |
|
---|
| 488 | if (left == NULL) {
|
---|
| 489 | if (right)
|
---|
| 490 | right->parent = origparent;
|
---|
| 491 |
|
---|
| 492 | *superparent = right;
|
---|
| 493 | balnode = origparent;
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 | else {
|
---|
| 497 | for (avlnode = left; avlnode->right != NULL; avlnode = avlnode->right);
|
---|
| 498 |
|
---|
| 499 | if (avlnode == left) {
|
---|
| 500 | balnode = avlnode;
|
---|
| 501 | }
|
---|
| 502 | else {
|
---|
| 503 | balnode = avlnode->parent;
|
---|
| 504 | balnode->right = avlnode->left;
|
---|
| 505 | if (balnode->right != NULL)
|
---|
| 506 | balnode->right->parent = balnode;
|
---|
| 507 | avlnode->left = left;
|
---|
| 508 | left->parent = avlnode;
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | avlnode->right = right;
|
---|
| 512 | if (right != NULL)
|
---|
| 513 | right->parent = avlnode;
|
---|
| 514 | *superparent = avlnode;
|
---|
| 515 | avlnode->parent = origparent;
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | for (; balnode; balnode = nextbalnode) {
|
---|
| 519 | nextbalnode = balnode->parent;
|
---|
| 520 | zAVLRebalanceNode(avltree, balnode);
|
---|
| 521 | }
|
---|
| 522 | }
|
---|