#include "config_xor.h" #define USE_MD5 #define USE_SHA1 #include #include #include #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_MEMORY_H #include #endif #if defined(HAVE_MLOCK) && !defined(HAVE_BROKEN_MLOCK) #include #endif #include "sh_tiger.h" #include "sh_unix.h" #include "sh_error.h" #include "sh_utils.h" #define PRIV_MAX 32768 #if defined(TIGER_64_BIT) #if defined(HAVE_LONG_64) typedef unsigned long int word64; #elif defined(HAVE_LONG_LONG_64) typedef unsigned long long int word64; #else #error No 64 bit type found ! #endif #endif #if defined(HAVE_INT_32) typedef unsigned int sh_word32; #define MYFORMAT (_("%08X%08X%08X%08X%08X%08X")) #define GPGFORMAT (_("%08X %08X %08X %08X %08X %08X")) #elif defined(HAVE_LONG_32) typedef unsigned long sh_word32; #define MYFORMAT (_("%08lX%08lX%08lX%08lX%08lX%08lX")) #define GPGFORMAT (_("%08lX %08lX %08lX %08lX %08lX %08lX")) #elif defined(HAVE_SHORT_32) typedef unsigned short sh_word32; #define MYFORMAT (_("%08X%08X%08X%08X%08X%08X")) #define GPGFORMAT (_("%08X %08X %08X %08X %08X %08X")) #else #error No 32 bit type found ! #endif typedef unsigned char sh_byte; #define SH_KEY_NULL _("000000000000000000000000000000000000000000000000") #undef FIL__ #define FIL__ _("sh_tiger0.c") #if defined(TIGER_64_BIT) void tiger_t(word64 *str, word64 length, word64 * res); void tiger(word64 *str, word64 length, word64 * res); #ifdef TIGER_DBG static void tiger_dbg(word64 res[3], int step, unsigned long nblocks, unsigned long ncount) { return; } #endif #else void tiger(sh_word32 *str, sh_word32 length, sh_word32 * res); void tiger_t(sh_word32 *str, sh_word32 length, sh_word32 * res); #ifdef TIGER_DBG static void tiger_dbg(sh_word32 res[6], int step, unsigned long nblocks, unsigned long ncount) { fprintf(stderr, _("ST %d BLK %2ld CT %2ld %08lX %08lX %08lX %08lX %08lX %08lX\n"), step, nblocks, ncount, (sh_word32)(res[1]), (sh_word32)(res[0]), (sh_word32)(res[3]), (sh_word32)(res[2]), (sh_word32)(res[5]), (sh_word32)(res[4]) ); } #endif #endif /* this is the wrapper function -- not part of the tiger reference * implementation */ static sh_byte buffer[PRIV_MAX + 72]; #if defined(TIGER_64_BIT) static word64 * sh_tiger_hash_val (const char * filename, TigerType what, UINT64 Length, int timeout, word64 * res) #else static sh_word32 * sh_tiger_hash_val (const char * filename, TigerType what, UINT64 Length, int timeout, sh_word32 * res) #endif { SL_TICKET fd; int i, j, tt; int count = 0; int blk; char * tmp; sh_byte * bptr; sh_byte bbuf[64]; UINT64 bcount = 0; static int lockflag = SL_FALSE; unsigned long pages_read; uid_t euid; unsigned long ncount = 0, nblocks = 0; unsigned long t, msb, lsb; #if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE) /*@-nestedextern@*/ extern long IO_Limit; /*@+nestedextern@*/ #endif #if defined(TIGER_64_BIT) #define TIGER_CAST (word64*) /* word64 res[3]; */ res[0]= (word64) 0x0123456789ABCDEFLL; res[1]= (word64) 0xFEDCBA9876543210LL; res[2]= (word64) 0xF096A5B4C3B2E187LL; #else #define TIGER_CAST (sh_word32*) /* sh_word32 res[6]; */ res[0]= (sh_word32) 0x89ABCDEF; res[1]= (sh_word32) 0x01234567; res[2]= (sh_word32) 0x76543210; res[3]= (sh_word32) 0xFEDCBA98; res[4]= (sh_word32) 0xC3B2E187; res[5]= (sh_word32) 0xF096A5B4; #endif SL_ENTER(_("sh_tiger_hash_val")); if (what >= TIGER_FILE) { if (what > TIGER_FD) { fd = what; TPT((0,FIL__, __LINE__, _("msg=, fd=<%ld>\n"), fd)); } else { TPT((0,FIL__, __LINE__, _("msg=, path=<%s>\n"), (filename == NULL ? _("(null)") : filename) )); fd = sl_open_read (filename, SL_YESPRIV); } if (SL_ISERROR (fd)) { TPT((0, FIL__, __LINE__, _("msg=\n"), fd)); tmp = sh_util_safe_name (filename); (void) sl_get_euid(&euid); sh_error_handle (ShDFLevel[SH_ERR_T_FILE], FIL__, __LINE__, (int)fd, MSG_E_ACCESS, (long) euid, tmp); SH_FREE(tmp); SL_RETURN( NULL, _("sh_tiger_hash_val")); } SH_MUTEX_LOCK(mutex_skey); #if defined(HAVE_MLOCK) && !defined(HAVE_BROKEN_MLOCK) if ((lockflag == SL_FALSE) && (skey->mlock_failed == SL_FALSE)) { lockflag = SL_TRUE; if ( (-1) == sh_unix_mlock(FIL__, __LINE__, (char *)buffer, (PRIV_MAX)*sizeof(sh_byte))) skey->mlock_failed = SL_TRUE; } #else if (lockflag == SL_FALSE && skey->mlock_failed == SL_FALSE) { lockflag = SL_TRUE; skey->mlock_failed = SL_TRUE; } #endif SH_MUTEX_UNLOCK(mutex_skey); #ifdef TIGER_DBG tiger_dbg (res, 0, nblocks, ncount); #endif pages_read = 0; while (1) { if (timeout > 0) count = sl_read_timeout (fd, buffer, PRIV_MAX, timeout, SL_TRUE); else count = sl_read (fd, buffer, PRIV_MAX); ++pages_read; if (SL_ISERROR (count)) { if (sig_termfast == 1) { SL_RETURN( NULL, _("sh_tiger_hash_val")); } TPT((0, FIL__ , __LINE__ , _("msg=\n"), count)); tmp = sh_util_safe_name (filename); if (count == SL_TIMEOUT) { if (timeout != 7) { sh_error_handle (SH_ERR_ERR, FIL__, __LINE__, count, MSG_E_TIMEOUT, timeout, tmp); } } else sh_error_handle (ShDFLevel[SH_ERR_T_FILE], FIL__, __LINE__, count, MSG_E_READ, tmp); SH_FREE(tmp); memset (bbuf, 0, 64); memset (buffer, 0, PRIV_MAX); SL_RETURN( NULL, _("sh_tiger_hash_val")); } if (Length != TIGER_NOLIM) { bcount += count; if (bcount > Length) count = count - (bcount - Length); count = (count < 0) ? 0 : count; } blk = (count / 64); /* number of 64-byte words */ /* nblocks += blk; number of 64-byte words * count cannot be negative here, see 'if (SL_ISERROR (count))' */ tt = blk*64; ncount = (unsigned long) (count - tt); nblocks += blk; /* MAY_LOCK */ sh.statistics.bytes_hashed += tt; bptr = buffer; tt = 0; for (i = 0; i < blk; ++i) { bptr = &buffer[tt]; tt += 64; tiger_t(TIGER_CAST bptr, 64, res); #ifdef TIGER_DBG tiger_dbg (res, 3, nblocks, ncount); #endif } if (blk < (PRIV_MAX / 64)) /* this must be (PRIV_MAX / 64) */ break; #if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE) if (sig_termfast == 1) { memset (bbuf, 0, 64); memset (buffer, 0, PRIV_MAX); SL_RETURN( NULL, _("sh_tiger_hash_val")); } if ((IO_Limit) > 0 && (pages_read == 32)) /* check for I/O limit */ { sh_unix_io_pause (); pages_read = 0; } #endif } TPT((0, FIL__, __LINE__ , _("msg=\n"))); /* copy incomplete block */ j = 0; for (i = 0; i < 64; i += 4) { bbuf[i] = (sh_byte) '\0'; bbuf[i+1] = (sh_byte) '\0'; bbuf[i+2] = (sh_byte) '\0'; bbuf[i+3] = (sh_byte) '\0'; } for (i = (count/64) * 64; i < count; ++i) /*@-usedef@*/bbuf[j++] = buffer[i];/*@+usedef@*/ #ifdef TIGER_DBG tiger_dbg (res, 5, nblocks, ncount); #endif msb = 0; t = nblocks; if( (lsb = t << 6) < t ) msb++; msb += t >> 26; t = lsb; if( (lsb = t + ncount) < t ) msb++; t = lsb; if( (lsb = t << 3) < t ) msb++; msb += t >> 29; if( j < 56 ) { bbuf[j++] = (sh_byte) 0x01; ++ncount; while( j < 56 ) { bbuf[j++] = (sh_byte) 0; ++ncount; } } else { bbuf[j++] = (sh_byte) 0x01; while( j < 64 ) bbuf[j++] = (sh_byte) 0; tiger_t(TIGER_CAST bbuf, 64, res); /* MAY_LOCK */ sh.statistics.bytes_hashed += 64; ++nblocks; ncount = 0; sl_memset(bbuf, 0, 56 ); } #ifdef TIGER_DBG tiger_dbg (res, 6, nblocks, ncount); #endif bbuf[56] = (sh_byte) (lsb ); bbuf[57] = (sh_byte) (lsb >> 8); bbuf[58] = (sh_byte) (lsb >> 16); bbuf[59] = (sh_byte) (lsb >> 24); bbuf[60] = (sh_byte) (msb ); bbuf[61] = (sh_byte) (msb >> 8); bbuf[62] = (sh_byte) (msb >> 16); bbuf[63] = (sh_byte) (msb >> 24); tiger_t(TIGER_CAST bbuf, 64, res); sh.statistics.bytes_hashed += 64; #ifdef TIGER_DBG tiger_dbg (res, 7, nblocks, ncount); #endif sl_memset (bbuf, '\0', sizeof(bbuf)); sl_memset (buffer, '\0', sizeof(buffer)); if (what == TIGER_FILE) (void) sl_close (fd); SL_RETURN( res, _("sh_tiger_hash_val")); } if (what == TIGER_DATA && filename != NULL) { tiger(TIGER_CAST filename, (sh_word32) Length, res); SL_RETURN(res, _("sh_tiger_hash_val")); } SL_RETURN( NULL, _("sh_tiger_hash_val")); } /* Thu Oct 18 18:53:33 CEST 2001 */ #ifdef USE_MD5 /*@-type@*/ /* md5.c - Functions to compute MD5 message digest of files or memory blocks * according to the definition of MD5 in RFC 1321 from April 1992. * Copyright (C) 1995, 1996 Free Software Foundation, Inc. * * NOTE: The canonical source of this file is maintained with the GNU C * Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Written by Ulrich Drepper , 1995. */ /* Hacked to work with samhain by R. Wichmann */ typedef UINT32 md5_uint32; /* Structure to save state of computation between the single steps. */ typedef struct md5_ctx { md5_uint32 A; md5_uint32 B; md5_uint32 C; md5_uint32 D; md5_uint32 total[2]; md5_uint32 buflen; char buffer[128]; } md5Param; /* * The following three functions are build up the low level used in * the functions `md5_stream' and `md5_buffer'. */ /* Initialize structure containing state of computation. (RFC 1321, 3.3: Step 3) */ static void md5_init_ctx (struct md5_ctx *ctx); /* Starting with the result of former calls of this function (or the initialization function update the context for the next LEN bytes starting at BUFFER. It is necessary that LEN is a multiple of 64!!! */ static void md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx); /* Starting with the result of former calls of this function (or the initialization function update the context for the next LEN bytes starting at BUFFER. It is NOT required that LEN is a multiple of 64. */ static void md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx); /* Process the remaining bytes in the buffer and put result from CTX in first 16 bytes following RESBUF. The result is always in little endian byte order, so that a byte-wise output yields to the wanted ASCII representation of the message digest. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void *md5_finish_ctx (struct md5_ctx *ctx, void *resbuf); /* Put result from CTX in first 16 bytes following RESBUF. The result is always in little endian byte order, so that a byte-wise output yields to the wanted ASCII representation of the message digest. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void *md5_read_ctx (const struct md5_ctx *ctx, void *resbuf); #if WORDS_BIGENDIAN static md5_uint32 swapu32(md5_uint32 n) { return ( ((n & 0xffU) << 24) | ((n & 0xff00U) << 8) | ((n & 0xff0000U) >> 8) | ((n & 0xff000000U) >> 24) ); } #define SWAP(n) swapu32(n) #else #define SWAP(n) (n) #endif /* This array contains the bytes used to pad the buffer to the next 64-byte boundary. (RFC 1321, 3.1: Step 1) */ static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; /* Initialize structure containing state of computation. (RFC 1321, 3.3: Step 3) */ static void md5_init_ctx(struct md5_ctx *ctx) { ctx->A = 0x67452301; ctx->B = 0xefcdab89; ctx->C = 0x98badcfe; ctx->D = 0x10325476; ctx->total[0] = ctx->total[1] = 0; ctx->buflen = 0; } /* Put result from CTX in first 16 bytes following RESBUF. The result must be in little endian byte order. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void *md5_read_ctx(const struct md5_ctx *ctx, void *resbuf) { ((md5_uint32 *) resbuf)[0] = SWAP(ctx->A); ((md5_uint32 *) resbuf)[1] = SWAP(ctx->B); ((md5_uint32 *) resbuf)[2] = SWAP(ctx->C); ((md5_uint32 *) resbuf)[3] = SWAP(ctx->D); return resbuf; } /* Process the remaining bytes in the internal buffer and the usual prolog according to the standard and write the result to RESBUF. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ static void *md5_finish_ctx(struct md5_ctx *ctx, void *resbuf) { /* Take yet unprocessed bytes into account. */ md5_uint32 bytes = ctx->buflen; size_t pad; /* Now count remaining bytes. */ ctx->total[0] += bytes; if (ctx->total[0] < bytes) ++ctx->total[1]; pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; memcpy(&ctx->buffer[bytes], fillbuf, pad); /* Put the 64-bit file length in *bits* at the end of the buffer. */ *(md5_uint32 *) & ctx->buffer[bytes + pad] = SWAP(ctx->total[0] << 3); *(md5_uint32 *) & ctx->buffer[bytes + pad + 4] = SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29)); /* Process last bytes. */ md5_process_block(ctx->buffer, bytes + pad + 8, ctx); return md5_read_ctx(ctx, resbuf); } /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The result is always in little endian byte order, so that a byte-wise output yields to the wanted ASCII representation of the message digest. */ void *md5_buffer(const char *buffer, size_t len, void *resblock) { struct md5_ctx ctx; /* Initialize the computation context. */ md5_init_ctx(&ctx); /* Process whole buffer but last len % 64 bytes. */ md5_process_bytes(buffer, len, &ctx); /* Put result in desired memory area. */ return md5_finish_ctx(&ctx, resblock); } static void md5_process_bytes(const void *buffer, size_t len, struct md5_ctx *ctx) { /* When we already have some bits in our internal buffer concatenate both inputs first. */ if (ctx->buflen != 0) { size_t left_over = ctx->buflen; size_t add = 128 - left_over > len ? len : 128 - left_over; memcpy(&ctx->buffer[left_over], buffer, add); ctx->buflen += add; if (left_over + add > 64) { md5_process_block(ctx->buffer, (left_over + add) & ~63, ctx); /* The regions in the following copy operation cannot overlap. */ memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], (left_over + add) & 63); ctx->buflen = (left_over + add) & 63; } buffer = (const char *) buffer + add; len -= add; } /* Process available complete blocks. */ if (len > 64) { md5_process_block(buffer, len & ~63, ctx); buffer = (const char *) buffer + (len & ~63); len &= 63; } /* Move remaining bytes in internal buffer. */ if (len > 0) { memcpy(ctx->buffer, buffer, len); ctx->buflen = len; } } /* These are the four functions used in the four steps of the MD5 algorithm and defined in the RFC 1321. The first function is a little bit optimized (as found in Colin Plumbs public domain implementation). */ /* #define FF(b, c, d) ((b & c) | (~b & d)) */ #define FF(b, c, d) (d ^ (b & (c ^ d))) #define FG(b, c, d) FF (d, b, c) #define FH(b, c, d) (b ^ c ^ d) #define FI(b, c, d) (c ^ (b | ~d)) /* Process LEN bytes of BUFFER, accumulating context into CTX. It is assumed that LEN % 64 == 0. */ static void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx) { md5_uint32 correct_words[16]; const md5_uint32 *words = buffer; size_t nwords = len / sizeof(md5_uint32); const md5_uint32 *endp = words + nwords; md5_uint32 A = ctx->A; md5_uint32 B = ctx->B; md5_uint32 C = ctx->C; md5_uint32 D = ctx->D; /* First increment the byte count. RFC 1321 specifies the possible length of the file up to 2^64 bits. Here we only compute the number of bytes. Do a double word increment. */ ctx->total[0] += len; if (ctx->total[0] < len) ++ctx->total[1]; /* Process all bytes in the buffer with 64 bytes in each round of the loop. */ while (words < endp) { md5_uint32 *cwp = correct_words; md5_uint32 A_save = A; md5_uint32 B_save = B; md5_uint32 C_save = C; md5_uint32 D_save = D; /* First round: using the given function, the context and a constant the next context is computed. Because the algorithms processing unit is a 32-bit word and it is determined to work on words in little endian byte order we perhaps have to change the byte order before the computation. To reduce the work for the next steps we store the swapped words in the array CORRECT_WORDS. */ #define OP(a, b, c, d, s, T) \ do \ { \ a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \ ++words; \ CYCLIC (a, s); \ a += b; \ } \ while (0) /* It is unfortunate that C does not provide an operator for cyclic rotation. Hope the C compiler is smart enough. */ #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) /* Before we start, one word to the strange constants. They are defined in RFC 1321 as T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 */ /* Round 1. */ OP(A, B, C, D, 7, 0xd76aa478); OP(D, A, B, C, 12, 0xe8c7b756); OP(C, D, A, B, 17, 0x242070db); OP(B, C, D, A, 22, 0xc1bdceee); OP(A, B, C, D, 7, 0xf57c0faf); OP(D, A, B, C, 12, 0x4787c62a); OP(C, D, A, B, 17, 0xa8304613); OP(B, C, D, A, 22, 0xfd469501); OP(A, B, C, D, 7, 0x698098d8); OP(D, A, B, C, 12, 0x8b44f7af); OP(C, D, A, B, 17, 0xffff5bb1); OP(B, C, D, A, 22, 0x895cd7be); OP(A, B, C, D, 7, 0x6b901122); OP(D, A, B, C, 12, 0xfd987193); OP(C, D, A, B, 17, 0xa679438e); OP(B, C, D, A, 22, 0x49b40821); /* For the second to fourth round we have the possibly swapped words in CORRECT_WORDS. Redefine the macro to take an additional first argument specifying the function to use. */ #undef OP #define OP(f, a, b, c, d, k, s, T) \ do \ { \ a += f (b, c, d) + correct_words[k] + T; \ CYCLIC (a, s); \ a += b; \ } \ while (0) /* Round 2. */ OP(FG, A, B, C, D, 1, 5, 0xf61e2562); OP(FG, D, A, B, C, 6, 9, 0xc040b340); OP(FG, C, D, A, B, 11, 14, 0x265e5a51); OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); OP(FG, A, B, C, D, 5, 5, 0xd62f105d); OP(FG, D, A, B, C, 10, 9, 0x02441453); OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); OP(FG, D, A, B, C, 14, 9, 0xc33707d6); OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); OP(FG, B, C, D, A, 8, 20, 0x455a14ed); OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); OP(FG, C, D, A, B, 7, 14, 0x676f02d9); OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); /* Round 3. */ OP(FH, A, B, C, D, 5, 4, 0xfffa3942); OP(FH, D, A, B, C, 8, 11, 0x8771f681); OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); OP(FH, B, C, D, A, 14, 23, 0xfde5380c); OP(FH, A, B, C, D, 1, 4, 0xa4beea44); OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); OP(FH, B, C, D, A, 6, 23, 0x04881d05); OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); /* Round 4. */ OP(FI, A, B, C, D, 0, 6, 0xf4292244); OP(FI, D, A, B, C, 7, 10, 0x432aff97); OP(FI, C, D, A, B, 14, 15, 0xab9423a7); OP(FI, B, C, D, A, 5, 21, 0xfc93a039); OP(FI, A, B, C, D, 12, 6, 0x655b59c3); OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); OP(FI, C, D, A, B, 10, 15, 0xffeff47d); OP(FI, B, C, D, A, 1, 21, 0x85845dd1); OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); OP(FI, C, D, A, B, 6, 15, 0xa3014314); OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); OP(FI, A, B, C, D, 4, 6, 0xf7537e82); OP(FI, D, A, B, C, 11, 10, 0xbd3af235); OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); OP(FI, B, C, D, A, 9, 21, 0xeb86d391); /* Add the starting values of the context. */ A += A_save; B += B_save; C += C_save; D += D_save; } /* Put checksum in context given as argument. */ ctx->A = A; ctx->B = B; ctx->C = C; ctx->D = D; } /*---------------------------------------------------------------------------- *--------end of md5.c *----------------------------------------------------------------------------*/ int md5Reset(register md5Param* p) { unsigned int i; md5_init_ctx(p); for (i = 0; i < 16; i += 8) { p->buffer[i] = 0x00; p->buffer[i+1] = 0x00; p->buffer[i+2] = 0x00; p->buffer[i+3] = 0x00; p->buffer[i+4] = 0x00; p->buffer[i+5] = 0x00; p->buffer[i+6] = 0x00; p->buffer[i+7] = 0x00; } return 0; } int md5Update(md5Param* p, const sh_byte* data, int size) { md5_process_bytes(data, size, p); return 0; } static void md5Finish(md5Param* p, void *resblock) { (void) md5_finish_ctx(p, resblock); } int md5Digest(md5Param* p, md5_uint32* data) { md5Finish(p, data); (void) md5Reset(p); return 0; } /*@+type@*/ /* Compute MD5 message digest for bytes read from STREAM. The resulting message digest number will be written into the 16 bytes beginning at RESBLOCK. */ static int md5_stream(char * filename, void *resblock, UINT64 Length, int timeout, SL_TICKET fd) { /* Important: BLOCKSIZE must be a multiple of 64. */ static const int BLOCKSIZE = 8192; struct md5_ctx ctx; char buffer[8264]; /* BLOCKSIZE + 72 AIX compiler chokes */ size_t sum; SL_TICKET fd; char * tmp; uid_t euid; UINT64 bcount = 0; unsigned long pages_read; #if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE) /*@-nestedextern@*/ extern long IO_Limit; /*@+nestedextern@*/ #endif /* Initialize the computation context. */ (void) md5Reset (&ctx); if (SL_ISERROR (fd)) { TPT((0, FIL__, __LINE__, _("msg=\n"), fd)); tmp = sh_util_safe_name (filename); (void) sl_get_euid(&euid); sh_error_handle (ShDFLevel[SH_ERR_T_FILE], FIL__, __LINE__, fd, MSG_E_ACCESS, (long) euid, tmp); SH_FREE(tmp); return -1; } pages_read = 0; /* Iterate over full file contents. */ while (1 == 1) { /* We read the file in blocks of BLOCKSIZE bytes. One call of the computation function processes the whole buffer so that with the next round of the loop another block can be read. */ off_t n; sum = 0; /* Read block. Take care for partial reads. */ do { n = (off_t) sl_read_timeout (fd, buffer + sum, (size_t) BLOCKSIZE - sum, timeout); if (SL_ISERROR (n)) { if (sig_termfast == 1) return -1; TPT((0, FIL__ , __LINE__ , _("msg=\n"), n)); tmp = sh_util_safe_name (filename); if (n == SL_TIMEOUT) { if (timeout != 7) { sh_error_handle (SH_ERR_ERR, FIL__, __LINE__, n, MSG_E_TIMEOUT, timeout, tmp); } } else sh_error_handle (ShDFLevel[SH_ERR_T_FILE], FIL__, __LINE__, n, MSG_E_READ, tmp); SH_FREE(tmp); return -1; } if (Length != TIGER_NOLIM) { bcount += n; if (bcount > Length) n = n - (bcount - Length); n = (n < 0) ? 0 : n; } sum += n; } while (sum < (size_t) BLOCKSIZE && n != 0); ++pages_read; /* If end of file is reached, end the loop. */ if (n == 0) break; /* Process buffer with BLOCKSIZE bytes. Note that BLOCKSIZE % 64 == 0 */ md5_process_block(buffer, BLOCKSIZE, &ctx); sh.statistics.bytes_hashed += BLOCKSIZE; #if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE) if ((IO_Limit) > 0 && (pages_read == 32)) /* check for I/O limit */ { sh_unix_io_pause (); pages_read = 0; } if (sig_termfast == 1) { return -1; } #endif } /* Add the last bytes if necessary. */ if (sum > 0) { md5_process_bytes(buffer, sum, &ctx); sh.statistics.bytes_hashed += BLOCKSIZE; } /* Construct result in desired memory. */ (void) md5Digest(&ctx, resblock); return 0; } static char * sh_tiger_md5_hash (char * filename, TigerType what, UINT64 Length, int timeout, char * out, size_t len) { int cnt; char outbuf[KEY_LEN+1]; unsigned char md5buffer[16]; (void) md5_stream (filename, md5buffer, Length, timeout, what); /*@-bufferoverflowhigh -usedef@*/ for (cnt = 0; cnt < 16; ++cnt) sprintf (&outbuf[cnt*2], _("%02X"), /* known to fit */ (unsigned int) md5buffer[cnt]); /*@+bufferoverflowhigh +usedef@*/ for (cnt = 32; cnt < KEY_LEN; ++cnt) outbuf[cnt] = '0'; outbuf[KEY_LEN] = '\0'; sl_strlcpy(out, outbuf, len); return out; } /* USE_MD5 */ #endif /*************************************************************** * * SHA1 * ***************************************************************/ #ifdef USE_SHA1 /*@-type@*/ typedef unsigned char sha_word8; typedef sh_word32 sha_word32; /* The SHA block size and message digest sizes, in bytes */ #define SHA_DATASIZE 64 #define SHA_DATALEN 16 #define SHA_DIGESTSIZE 20 #define SHA_DIGESTLEN 5 /* The structure for storing SHA info */ typedef struct sha_ctx { sha_word32 digest[SHA_DIGESTLEN]; /* Message digest */ sha_word32 count_l, count_h; /* 64-bit block count */ sha_word8 block[SHA_DATASIZE]; /* SHA data buffer */ int index; /* index into buffer */ } SHA_CTX; static void sha_init(struct sha_ctx *ctx); static void sha_update(struct sha_ctx *ctx, sha_word8 *buffer,sha_word32 len); static void sha_final(struct sha_ctx *ctx); static void sha_digest(struct sha_ctx *ctx, sha_word8 *s); /* The SHA f()-functions. The f1 and f3 functions can be optimized to save one boolean operation each - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering this */ /*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */ #define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */ #define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ /*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */ #define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */ #define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ /* The SHA Mysterious Constants */ #define K1 0x5A827999L /* Rounds 0-19 */ #define K2 0x6ED9EBA1L /* Rounds 20-39 */ #define K3 0x8F1BBCDCL /* Rounds 40-59 */ #define K4 0xCA62C1D6L /* Rounds 60-79 */ /* SHA initial values */ #define h0init 0x67452301L #define h1init 0xEFCDAB89L #define h2init 0x98BADCFEL #define h3init 0x10325476L #define h4init 0xC3D2E1F0L /* 32-bit rotate left - kludged with shifts */ #define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) ) /* The initial expanding function. The hash function is defined over an 80-word expanded input array W, where the first 16 are copies of the input data, and the remaining 64 are defined by W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ] This implementation generates these values on the fly in a circular buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this optimization. The updated SHA changes the expanding function by adding a rotate of 1 bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor for this information */ #define expand(W,i) ( W[ i & 15 ] = \ ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \ W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) ) /* The prototype SHA sub-round. The fundamental sub-round is: a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data; b' = a; c' = ROTL( 30, b ); d' = c; e' = d; but this is implemented by unrolling the loop 5 times and renaming the variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. This code is then replicated 20 times for each of the 4 functions, using the next 20 values from the W[] array each time */ #define subRound(a, b, c, d, e, f, k, data) \ ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) ) /* Initialize the SHA values */ static void sha_init(struct sha_ctx *ctx) { /* Set the h-vars to their initial values */ ctx->digest[ 0 ] = h0init; ctx->digest[ 1 ] = h1init; ctx->digest[ 2 ] = h2init; ctx->digest[ 3 ] = h3init; ctx->digest[ 4 ] = h4init; /* Initialize bit count */ ctx->count_l = ctx->count_h = 0; /* Initialize buffer */ ctx->index = 0; } /* Perform the SHA transformation. Note that this code, like MD5, seems to break some optimizing compilers due to the complexity of the expressions and the size of the basic block. It may be necessary to split it into sections, e.g. based on the four subrounds Note that this function destroys the data area */ static void sha_transform(struct sha_ctx *ctx, sha_word32 *data ) { register sha_word32 A, B, C, D, E; /* Local vars */ /* Set up first buffer and local data buffer */ A = ctx->digest[0]; B = ctx->digest[1]; C = ctx->digest[2]; D = ctx->digest[3]; E = ctx->digest[4]; /* Heavy mangling, in 4 sub-rounds of 20 interations each. */ subRound( A, B, C, D, E, f1, K1, data[ 0] ); subRound( E, A, B, C, D, f1, K1, data[ 1] ); subRound( D, E, A, B, C, f1, K1, data[ 2] ); subRound( C, D, E, A, B, f1, K1, data[ 3] ); subRound( B, C, D, E, A, f1, K1, data[ 4] ); subRound( A, B, C, D, E, f1, K1, data[ 5] ); subRound( E, A, B, C, D, f1, K1, data[ 6] ); subRound( D, E, A, B, C, f1, K1, data[ 7] ); subRound( C, D, E, A, B, f1, K1, data[ 8] ); subRound( B, C, D, E, A, f1, K1, data[ 9] ); subRound( A, B, C, D, E, f1, K1, data[10] ); subRound( E, A, B, C, D, f1, K1, data[11] ); subRound( D, E, A, B, C, f1, K1, data[12] ); subRound( C, D, E, A, B, f1, K1, data[13] ); subRound( B, C, D, E, A, f1, K1, data[14] ); subRound( A, B, C, D, E, f1, K1, data[15] ); subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) ); subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) ); subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) ); subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) ); /* Build message digest */ ctx->digest[0] += A; ctx->digest[1] += B; ctx->digest[2] += C; ctx->digest[3] += D; ctx->digest[4] += E; } #if 1 #ifndef EXTRACT_UCHAR #define EXTRACT_UCHAR(p) (*(unsigned char *)(p)) #endif #define STRING2INT(s) ((((((EXTRACT_UCHAR(s) << 8) \ | EXTRACT_UCHAR(s+1)) << 8) \ | EXTRACT_UCHAR(s+2)) << 8) \ | EXTRACT_UCHAR(s+3)) #else sha_word32 STRING2INT(word8 *s) { sha_word32 r; int i; for (i = 0, r = 0; i < 4; i++, s++) r = (r << 8) | *s; return r; } #endif static void sha_block(struct sha_ctx *ctx, sha_word8 *block) { sha_word32 data[SHA_DATALEN]; int i; /* Update block count */ /*@-boolops@*/ if (!++ctx->count_l) ++ctx->count_h; /*@+boolops@*/ /* Endian independent conversion */ for (i = 0; iindex != 0) { /* Try to fill partial block */ unsigned left = SHA_DATASIZE - ctx->index; if (len < left) { memmove(ctx->block + ctx->index, buffer, len); ctx->index += len; return; /* Finished */ } else { memmove(ctx->block + ctx->index, buffer, left); sha_block(ctx, ctx->block); buffer += left; len -= left; } } while (len >= SHA_DATASIZE) { sha_block(ctx, buffer); buffer += SHA_DATASIZE; len -= SHA_DATASIZE; } /*@-predboolint@*/ if ((ctx->index = len)) /* This assignment is intended */ /*@+predboolint@*/ /* Buffer leftovers */ memmove(ctx->block, buffer, len); } /* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern 1 0* (64-bit count of bits processed, MSB-first) */ static void sha_final(struct sha_ctx *ctx) { sha_word32 data[SHA_DATALEN]; int i; int words; i = ctx->index; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ ctx->block[i++] = 0x80; /* Fill rest of word */ /*@-predboolint@*/ for( ; i & 3; i++) ctx->block[i] = 0; /*@+predboolint@*/ /* i is now a multiple of the word size 4 */ /*@-shiftimplementation@*/ words = i >> 2; /*@+shiftimplementation@*/ for (i = 0; i < words; i++) data[i] = STRING2INT(ctx->block + 4*i); if (words > (SHA_DATALEN-2)) { /* No room for length in this block. Process it and * pad with another one */ for (i = words ; i < SHA_DATALEN; i++) data[i] = 0; sha_transform(ctx, data); for (i = 0; i < (SHA_DATALEN-2); i++) data[i] = 0; } else for (i = words ; i < SHA_DATALEN - 2; i++) data[i] = 0; /* Theres 512 = 2^9 bits in one block */ /*@-shiftimplementation@*/ data[SHA_DATALEN-2] = (ctx->count_h << 9) | (ctx->count_l >> 23); data[SHA_DATALEN-1] = (ctx->count_l << 9) | (ctx->index << 3); /*@+shiftimplementation@*/ sha_transform(ctx, data); } static void sha_digest(struct sha_ctx *ctx, sha_word8 *s) { int i; for (i = 0; i < SHA_DIGESTLEN; i++) { *s++ = ctx->digest[i] >> 24; *s++ = 0xff & (ctx->digest[i] >> 16); *s++ = 0xff & (ctx->digest[i] >> 8); *s++ = 0xff & ctx->digest[i]; } } /*@+type@*/ /* Compute SHA1 message digest for bytes read from STREAM. The resulting message digest number will be written into the 16 bytes beginning at RESBLOCK. */ static int sha1_stream(char * filename, void *resblock, UINT64 Length, int timeout, SL_TICKET fd) { /* Important: BLOCKSIZE must be a multiple of 64. */ static const int BLOCKSIZE = 4096; struct sha_ctx ctx; char buffer[4168]; /* BLOCKSIZE + 72 AIX compiler chokes */ off_t sum = 0; SL_TICKET fd; char * tmp; uid_t euid; UINT64 bcount = 0; unsigned long pages_read; #if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE) /*@-nestedextern@*/ extern long IO_Limit; /*@+nestedextern@*/ #endif /* Initialize the computation context. */ (void) sha_init(&ctx); if (SL_ISERROR (fd)) { TPT((0, FIL__, __LINE__, _("msg=\n"), fd)); tmp = sh_util_safe_name (filename); (void) sl_get_euid(&euid); sh_error_handle (ShDFLevel[SH_ERR_T_FILE], FIL__, __LINE__, fd, MSG_E_ACCESS, (long) euid, tmp); SH_FREE(tmp); return -1; } /* Iterate over full file contents. */ pages_read = 0; while (1 == 1) { /* We read the file in blocks of BLOCKSIZE bytes. One call of the computation function processes the whole buffer so that with the next round of the loop another block can be read. */ off_t n; sum = 0; /* Read block. Take care for partial reads. */ do { n = (off_t) sl_read_timeout(fd, buffer + sum, (size_t) BLOCKSIZE - sum, timeout); if (SL_ISERROR (n)) { if (sig_termfast == 1) return -1; TPT((0, FIL__ , __LINE__ , _("msg=\n"), n)); tmp = sh_util_safe_name (filename); if (n == SL_TIMEOUT) { if (timeout != 7) { sh_error_handle (SH_ERR_ERR, FIL__, __LINE__, n, MSG_E_TIMEOUT, timeout, tmp); } } else { sh_error_handle (ShDFLevel[SH_ERR_T_FILE], FIL__, __LINE__, n, MSG_E_READ, tmp); } SH_FREE(tmp); return -1; } if (Length != TIGER_NOLIM) { bcount += n; if (bcount > Length) n = n - (bcount - Length); n = (n < 0) ? 0 : n; } sum += n; } while (sum < (off_t)BLOCKSIZE && n != 0); ++pages_read; /* If end of file is reached, end the loop. */ if (n == 0) break; /* Process buffer with BLOCKSIZE bytes. Note that BLOCKSIZE % 64 == 0 */ sha_update(&ctx, (sha_word8*) buffer, (sha_word32) BLOCKSIZE); sh.statistics.bytes_hashed += BLOCKSIZE; #if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE) if ((IO_Limit) > 0 && (pages_read == 32)) /* check for I/O limit */ { sh_unix_io_pause (); pages_read = 0; } if (sig_termfast == 1) { return -1; } #endif } /* Add the last bytes if necessary. */ if (sum > 0) { sha_update(&ctx, (sha_word8*) buffer, (sha_word32) sum); sh.statistics.bytes_hashed += sum; } sha_final (&ctx); /* Construct result in desired memory. */ sha_digest (&ctx, resblock); return 0; } static char * sh_tiger_sha1_hash (char * filename, TigerType what, UINT64 Length, int timeout, char * out, size_t len) { int cnt = (int) Length; /* fix compiler warning */ char outbuf[KEY_LEN+1]; unsigned char sha1buffer[20]; (void) sha1_stream (filename, sha1buffer, Length, timeout, what); /*@-bufferoverflowhigh -usedef@*/ for (cnt = 0; cnt < 20; ++cnt) sprintf (&outbuf[cnt*2], _("%02X"), /* known to fit */ (unsigned int) sha1buffer[cnt]); /*@+bufferoverflowhigh +usedef@*/ for (cnt = 40; cnt < KEY_LEN; ++cnt) outbuf[cnt] = '0'; outbuf[KEY_LEN] = '\0'; sl_strlcpy(out, outbuf, len); return out; } /* ifdef USE_SHA1 */ #endif static int hash_type = 0; int sh_tiger_get_hashtype () { return hash_type; } int sh_tiger_hashtype (const char * c) { SL_ENTER( _("sh_tiger_hashtype")); if (!c) { SL_RETURN( -1, _("sh_tiger_hashtype")); } if (0 == strcmp(c, _("TIGER192"))) hash_type = 0; #ifdef USE_MD5 else if (0 == strcmp(c, _("SHA1"))) hash_type = 1; #endif #ifdef USE_SHA1 else if (0 == strcmp(c, _("MD5"))) hash_type = 2; #endif else { SL_RETURN( -1, _("sh_tiger_hashtype")); } SL_RETURN( 0, _("sh_tiger_hashtype")); } static char * sh_tiger_hash_internal (const char * filename, TigerType what, UINT64 Length, int timeout, char * out, size_t len); char * sh_tiger_hash (const char * filename, TigerType what, UINT64 Length, char * out, size_t len) { return sh_tiger_hash_internal (filename, what, Length, 0, out,len); } char * sh_tiger_generic_hash (char * filename, TigerType what, UINT64 Length, int timeout, char * out, size_t len) { #ifdef USE_SHA1 if (hash_type == 1) return sh_tiger_sha1_hash (filename, what, Length, timeout, out, len); #endif #ifdef USE_MD5 if (hash_type == 2) return sh_tiger_md5_hash (filename, what, Length, timeout, out, len); #endif return sh_tiger_hash_internal (filename, what, Length, timeout, out, len); } /* * ------- end new --------- */ static char * sh_tiger_hash_internal (const char * filename, TigerType what, UINT64 Length, int timeout, char * out, size_t len) { #if defined(TIGER_64_BIT) word64 res[3]; #else sh_word32 res[6]; #endif SL_ENTER( _("sh_tiger_hash_internal")); SH_VALIDATE_GE(len, (KEY_LEN+1)); if (NULL != sh_tiger_hash_val (filename, what, Length, timeout, res)) { #if defined(TIGER_64_BIT) sl_snprintf(out, len, MYFORMAT, (sh_word32)(res[0]>>32), (sh_word32)(res[0]), (sh_word32)(res[1]>>32), (sh_word32)(res[1]), (sh_word32)(res[2]>>32), (sh_word32)(res[2]) ); #else sl_snprintf(out, len, MYFORMAT, (sh_word32)(res[1]), (sh_word32)(res[0]), (sh_word32)(res[3]), (sh_word32)(res[2]), (sh_word32)(res[5]), (sh_word32)(res[4]) ); #endif out[len-1] = '\0'; SL_RETURN( out, _("sh_tiger_hash_internal")); } SL_RETURN( SH_KEY_NULL, _("sh_tiger_hash_internal")); } char * sh_tiger_hash_gpg (const char * filename, TigerType what, UINT64 Length) { size_t len; char * out; char outhash[48+6+1]; #if defined(TIGER_64_BIT) word64 res[3]; #else sh_word32 res[6]; #endif SL_ENTER(_("sh_tiger_hash_gpg")); if (NULL != sh_tiger_hash_val (filename, what, Length, 0, res)) { #if defined(TIGER_64_BIT) sl_snprintf(outhash, sizeof(outhash), GPGFORMAT, (sh_word32)(res[0]>>32), (sh_word32)(res[0]), (sh_word32)(res[1]>>32), (sh_word32)(res[1]), (sh_word32)(res[2]>>32), (sh_word32)(res[2]) ); #else sl_snprintf(outhash, sizeof(outhash), GPGFORMAT, (sh_word32)(res[1]), (sh_word32)(res[0]), (sh_word32)(res[3]), (sh_word32)(res[2]), (sh_word32)(res[5]), (sh_word32)(res[4]) ); #endif outhash[sizeof(outhash)-1] = '\0'; } else { sl_strlcpy(outhash, _("00000000 00000000 00000000 00000000 00000000 00000000"), sizeof(outhash)); } if (what == TIGER_FILE && sl_ok_adds(sl_strlen (filename), (2 + 48 + 6))) len = sl_strlen (filename) + 2 + 48 + 6; else len = 48 + 6; out = SH_ALLOC(len + 1); if (what == TIGER_FILE) { (void) sl_strlcpy (out, filename, len+1); (void) sl_strlcat (out, _(": "), len+1); (void) sl_strlcat (out, outhash, len+1); } else { (void) sl_strlcpy (out, outhash, len+1); } SL_RETURN( out, _("sh_tiger_hash_gpg")); } UINT32 * sh_tiger_hash_uint32 (char * filename, TigerType what, UINT64 Length, UINT32 * out, size_t len) { #if defined(TIGER_64_BIT) word64 res[3]; #else sh_word32 res[6]; #endif SL_ENTER(_("sh_tiger_hash_uint32")); SH_VALIDATE_GE(len, 6); out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 0; if (NULL != sh_tiger_hash_val (filename, what, Length, 0, res)) { #if defined(TIGER_64_BIT) out[0] = (UINT32)(res[0]>>32); out[1] = (UINT32)(res[0]); out[2] = (UINT32)(res[1]>>32); out[3] = (UINT32)(res[1]); out[4] = (UINT32)(res[2]>>32); out[5] = (UINT32)(res[2]); #else out[0] = (UINT32)(res[1]); out[1] = (UINT32)(res[0]); out[2] = (UINT32)(res[3]); out[3] = (UINT32)(res[2]); out[4] = (UINT32)(res[5]); out[5] = (UINT32)(res[4]); #endif } SL_RETURN(out, _("sh_tiger_hash_uint32")); }