/* * rijndael-api-fst.c v2.3 April '2000 * * Optimised ANSI C code * * authors: v1.0: Antoon Bosselaers * v2.0: Vincent Rijmen * v2.1: Vincent Rijmen * v2.2: Vincent Rijmen * v2.3: Paulo Barreto * v2.4: Vincent Rijmen * * This code is placed in the public domain. */ #include "config_xor.h" #include #include #include #include #ifdef SH_ENCRYPT #include "rijndael-api-fst.h" int makeKey(keyInstance *key, RIJ_BYTE direction, int keyLen, char *keyMaterial) { word8 k[MAXKC][4]; int i; char *keyMat; if (key == NULL) { return BAD_KEY_INSTANCE; } if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) { key->direction = direction; } else { return BAD_KEY_DIR; } if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { key->keyLen = keyLen; } else { return BAD_KEY_MAT; } if (keyMaterial != NULL) { strncpy(key->keyMaterial, keyMaterial, keyLen/4); } key->ROUNDS = keyLen/32 + 6; /* initialize key schedule: */ keyMat = key->keyMaterial; #ifndef BINARY_KEY_MATERIAL for (i = 0; i < key->keyLen/8; i++) { int t, j; t = *keyMat++; if ((t >= '0') && (t <= '9')) j = (t - '0') << 4; else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4; else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4; else return BAD_KEY_MAT; t = *keyMat++; if ((t >= '0') && (t <= '9')) j ^= (t - '0'); else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10); else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10); else return BAD_KEY_MAT; k[i >> 2][i & 3] = (word8)j; } #else for (i = 0; i < key->keyLen/8; i++) { k[i >> 2][i & 3] = (word8)keyMat[i]; } #endif /* ?BINARY_KEY_MATERIAL */ rijndaelKeySched(k, key->keySched, key->ROUNDS); if (direction == DIR_DECRYPT) { rijndaelKeyEncToDec(key->keySched, key->ROUNDS); } return TRUE; } int cipherInit(cipherInstance *cipher, RIJ_BYTE mode, char *IV) { if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) { cipher->mode = mode; } else { return BAD_CIPHER_MODE; } if (IV != NULL) { #ifndef BINARY_KEY_MATERIAL int i; for (i = 0; i < MAX_IV_SIZE; i++) { int t, j; t = IV[2*i]; if ((t >= '0') && (t <= '9')) j = (t - '0') << 4; else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4; else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4; else return BAD_CIPHER_INSTANCE; t = IV[2*i+1]; if ((t >= '0') && (t <= '9')) j ^= (t - '0'); else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10); else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10); else return BAD_CIPHER_INSTANCE; cipher->IV[i] = (word8)j; } #else memcpy(cipher->IV, IV, MAX_IV_SIZE); #endif /* ?BINARY_KEY_MATERIAL */ } else { memset(cipher->IV, 0, MAX_IV_SIZE); } return TRUE; } int blockEncrypt(cipherInstance *cipher, keyInstance *key, RIJ_BYTE *input, int inputLen, RIJ_BYTE *outBuffer) { int i, k, numBlocks; union { word32 bloc4[4]; word8 block[16]; } bb; union { word32 i4[4]; word8 iv[4][4]; } iu; if (cipher == NULL || key == NULL || key->direction == DIR_DECRYPT) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS); input += 16; outBuffer += 16; } break; case MODE_CBC: /* fix the memory alignment for HP-UX 10.20 * R. Wichmann Mon Jun 18 22:36:55 CEST 2001 */ #if STRICT_ALIGN memcpy(iu.iv, cipher->IV, 16); bb.bloc4[0] = iu.i4[0] ^ ((word32*)input)[0]; bb.bloc4[1] = iu.i4[1] ^ ((word32*)input)[1]; bb.bloc4[2] = iu.i4[2] ^ ((word32*)input)[2]; bb.bloc4[3] = iu.i4[3] ^ ((word32*)input)[3]; #else /* !STRICT_ALIGN */ ((word32*)block)[0] = ((word32*)cipher->IV)[0] ^ ((word32*)input)[0]; ((word32*)block)[1] = ((word32*)cipher->IV)[1] ^ ((word32*)input)[1]; ((word32*)block)[2] = ((word32*)cipher->IV)[2] ^ ((word32*)input)[2]; ((word32*)block)[3] = ((word32*)cipher->IV)[3] ^ ((word32*)input)[3]; #endif /* ?STRICT_ALIGN */ rijndaelEncrypt(bb.block, outBuffer, key->keySched, key->ROUNDS); input += 16; for (i = numBlocks - 1; i > 0; i--) { bb.bloc4[0] = ((word32*)outBuffer)[0] ^ ((word32*)input)[0]; bb.bloc4[1] = ((word32*)outBuffer)[1] ^ ((word32*)input)[1]; bb.bloc4[2] = ((word32*)outBuffer)[2] ^ ((word32*)input)[2]; bb.bloc4[3] = ((word32*)outBuffer)[3] ^ ((word32*)input)[3]; outBuffer += 16; rijndaelEncrypt(bb.block, outBuffer, key->keySched, key->ROUNDS); input += 16; } break; case MODE_CFB1: #if STRICT_ALIGN memcpy(iu.iv, cipher->IV, 16); #else /* !STRICT_ALIGN */ *((word32*)iv[0]) = *((word32*)(cipher->IV )); *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4)); *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8)); *((word32*)iv[3]) = *((word32*)(cipher->IV+12)); #endif /* ?STRICT_ALIGN */ for (i = numBlocks; i > 0; i--) { for (k = 0; k < 128; k++) { bb.bloc4[0] = iu.i4[0]; bb.bloc4[1] = iu.i4[1]; bb.bloc4[2] = iu.i4[2]; bb.bloc4[3] = iu.i4[3]; rijndaelEncrypt(bb.block, bb.block, key->keySched, key->ROUNDS); outBuffer[k/8] ^= (bb.block[0] & 0x80) >> (k & 7); iu.iv[0][0] = (iu.iv[0][0] << 1) | (iu.iv[0][1] >> 7); iu.iv[0][1] = (iu.iv[0][1] << 1) | (iu.iv[0][2] >> 7); iu.iv[0][2] = (iu.iv[0][2] << 1) | (iu.iv[0][3] >> 7); iu.iv[0][3] = (iu.iv[0][3] << 1) | (iu.iv[1][0] >> 7); iu.iv[1][0] = (iu.iv[1][0] << 1) | (iu.iv[1][1] >> 7); iu.iv[1][1] = (iu.iv[1][1] << 1) | (iu.iv[1][2] >> 7); iu.iv[1][2] = (iu.iv[1][2] << 1) | (iu.iv[1][3] >> 7); iu.iv[1][3] = (iu.iv[1][3] << 1) | (iu.iv[2][0] >> 7); iu.iv[2][0] = (iu.iv[2][0] << 1) | (iu.iv[2][1] >> 7); iu.iv[2][1] = (iu.iv[2][1] << 1) | (iu.iv[2][2] >> 7); iu.iv[2][2] = (iu.iv[2][2] << 1) | (iu.iv[2][3] >> 7); iu.iv[2][3] = (iu.iv[2][3] << 1) | (iu.iv[3][0] >> 7); iu.iv[3][0] = (iu.iv[3][0] << 1) | (iu.iv[3][1] >> 7); iu.iv[3][1] = (iu.iv[3][1] << 1) | (iu.iv[3][2] >> 7); iu.iv[3][2] = (iu.iv[3][2] << 1) | (iu.iv[3][3] >> 7); iu.iv[3][3] = (iu.iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1); } } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } int blockDecrypt(cipherInstance *cipher, keyInstance *key, RIJ_BYTE *input, int inputLen, RIJ_BYTE *outBuffer) { int i, k, numBlocks; union { word32 bloc4[4]; word8 block[16]; } bb; union { word32 i4[4]; word8 iv[4][4]; } iu; if (cipher == NULL || key == NULL || ((cipher->mode != MODE_CFB1) && (key->direction == DIR_ENCRYPT))) { return BAD_CIPHER_STATE; } if (input == NULL || inputLen <= 0) { return 0; /* nothing to do */ } numBlocks = inputLen/128; switch (cipher->mode) { case MODE_ECB: for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS); input += 16; outBuffer += 16; } break; case MODE_CBC: #if STRICT_ALIGN memcpy(iu.iv, cipher->IV, 16); #else *((word32*)iu.i4[0]) = *((word32*)(cipher->IV )); *((word32*)iu.i4[1]) = *((word32*)(cipher->IV+ 4)); *((word32*)iu.i4[2]) = *((word32*)(cipher->IV+ 8)); *((word32*)iu.i4[3]) = *((word32*)(cipher->IV+12)); #endif for (i = numBlocks; i > 0; i--) { rijndaelDecrypt(input, bb.block, key->keySched, key->ROUNDS); bb.bloc4[0] ^= iu.i4[0]; bb.bloc4[1] ^= iu.i4[1]; bb.bloc4[2] ^= iu.i4[2]; bb.bloc4[3] ^= iu.i4[3]; #if STRICT_ALIGN memcpy(iu.iv, input, 16); memcpy(outBuffer, bb.block, 16); #else *((word32*)iv[0]) = ((word32*)input)[0]; ((word32*)outBuffer)[0] = ((word32*)block)[0]; *((word32*)iv[1]) = ((word32*)input)[1]; ((word32*)outBuffer)[1] = ((word32*)block)[1]; *((word32*)iv[2]) = ((word32*)input)[2]; ((word32*)outBuffer)[2] = ((word32*)block)[2]; *((word32*)iv[3]) = ((word32*)input)[3]; ((word32*)outBuffer)[3] = ((word32*)block)[3]; #endif input += 16; outBuffer += 16; } break; case MODE_CFB1: #if STRICT_ALIGN memcpy(iu.iv, cipher->IV, 16); #else *((word32*)iv[0]) = *((word32*)(cipher->IV)); *((word32*)iv[1]) = *((word32*)(cipher->IV+ 4)); *((word32*)iv[2]) = *((word32*)(cipher->IV+ 8)); *((word32*)iv[3]) = *((word32*)(cipher->IV+12)); #endif for (i = numBlocks; i > 0; i--) { for (k = 0; k < 128; k++) { bb.bloc4[0] = iu.i4[0]; bb.bloc4[1] = iu.i4[1]; bb.bloc4[2] = iu.i4[2]; bb.bloc4[3] = iu.i4[3]; rijndaelEncrypt(bb.block, bb.block, key->keySched, key->ROUNDS); iu.iv[0][0] = (iu.iv[0][0] << 1) | (iu.iv[0][1] >> 7); iu.iv[0][1] = (iu.iv[0][1] << 1) | (iu.iv[0][2] >> 7); iu.iv[0][2] = (iu.iv[0][2] << 1) | (iu.iv[0][3] >> 7); iu.iv[0][3] = (iu.iv[0][3] << 1) | (iu.iv[1][0] >> 7); iu.iv[1][0] = (iu.iv[1][0] << 1) | (iu.iv[1][1] >> 7); iu.iv[1][1] = (iu.iv[1][1] << 1) | (iu.iv[1][2] >> 7); iu.iv[1][2] = (iu.iv[1][2] << 1) | (iu.iv[1][3] >> 7); iu.iv[1][3] = (iu.iv[1][3] << 1) | (iu.iv[2][0] >> 7); iu.iv[2][0] = (iu.iv[2][0] << 1) | (iu.iv[2][1] >> 7); iu.iv[2][1] = (iu.iv[2][1] << 1) | (iu.iv[2][2] >> 7); iu.iv[2][2] = (iu.iv[2][2] << 1) | (iu.iv[2][3] >> 7); iu.iv[2][3] = (iu.iv[2][3] << 1) | (iu.iv[3][0] >> 7); iu.iv[3][0] = (iu.iv[3][0] << 1) | (iu.iv[3][1] >> 7); iu.iv[3][1] = (iu.iv[3][1] << 1) | (iu.iv[3][2] >> 7); iu.iv[3][2] = (iu.iv[3][2] << 1) | (iu.iv[3][3] >> 7); iu.iv[3][3] = (iu.iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1); outBuffer[k/8] ^= (bb.block[0] & 0x80) >> (k & 7); } } break; default: return BAD_CIPHER_STATE; } return 128*numBlocks; } #ifdef INTERMEDIATE_VALUE_KAT /** * cipherUpdateRounds: * * Encrypts/Decrypts exactly one full block a specified number of rounds. * Only used in the Intermediate Value Known Answer Test. * * Returns: * TRUE - on success * BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized) */ int cipherUpdateRounds(cipherInstance *cipher, keyInstance *key, RIJ_BYTE *input, int inputLen, RIJ_BYTE *outBuffer, int rounds) { int j; word8 block[4][4]; if (cipher == NULL || key == NULL) { return BAD_CIPHER_STATE; } for (j = 3; j >= 0; j--) { /* parse input stream into rectangular array */ *((word32*)block[j]) = *((word32*)(input+4*j)); } switch (key->direction) { case DIR_ENCRYPT: rijndaelEncryptRound(block, key->keySched, key->ROUNDS, rounds); break; case DIR_DECRYPT: rijndaelDecryptRound(block, key->keySched, key->ROUNDS, rounds); break; default: return BAD_KEY_DIR; } for (j = 3; j >= 0; j--) { /* parse rectangular array into output ciphertext bytes */ *((word32*)(outBuffer+4*j)) = *((word32*)block[j]); } return TRUE; } #endif /* INTERMEDIATE_VALUE_KAT */ #endif