1 | /*
|
---|
2 | * zAVLTree.c: Source code for zAVLTrees.
|
---|
3 | * Copyright (C) 1998,2001 Michael H. Buselli
|
---|
4 | * This is version 0.1.3 (alpha).
|
---|
5 | * Generated from $Id: xAVLTree.c.sh,v 1.5 2001/06/07 06:58:28 cosine Exp $
|
---|
6 | *
|
---|
7 | * This library is free software; you can redistribute it and/or
|
---|
8 | * modify it under the terms of the GNU Library General Public
|
---|
9 | * License as published by the Free Software Foundation; either
|
---|
10 | * version 2 of the License, or (at your option) any later version.
|
---|
11 | *
|
---|
12 | * This library is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
15 | * Library General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU Library General Public
|
---|
18 | * License along with this library; if not, write to the Free
|
---|
19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
20 | *
|
---|
21 | * The author of this library can be reached at the following address:
|
---|
22 | * Michael H. Buselli
|
---|
23 | * 30051 N. Waukegan Rd. Apt. 103
|
---|
24 | * Lake Bluff, IL 60044-5412
|
---|
25 | *
|
---|
26 | * Or you can send email to <cosine@cosine.org>.
|
---|
27 | * The official web page for this product is:
|
---|
28 | * http://www.cosine.org/project/AVLTree/
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include <stdlib.h>
|
---|
32 | #include <string.h>
|
---|
33 | #include "zAVLTree.h"
|
---|
34 |
|
---|
35 | /* Interface for handling "string only" items rw 2014-06-26
|
---|
36 | */
|
---|
37 | static zAVLKey zstring_key (void const * arg)
|
---|
38 | {
|
---|
39 | return (zAVLKey) arg;
|
---|
40 | }
|
---|
41 |
|
---|
42 | static char * dummy_zfree_string;
|
---|
43 | #ifdef __clang__
|
---|
44 | static char * dummy_zfree_str;
|
---|
45 | #endif
|
---|
46 |
|
---|
47 | static void zfree_string (void * inptr)
|
---|
48 | {
|
---|
49 | #ifdef __clang__
|
---|
50 | dummy_zfree_str = (char *) inptr;
|
---|
51 | #else
|
---|
52 | char * str = (char *) inptr;
|
---|
53 | #endif
|
---|
54 |
|
---|
55 | /* Take the address to circumvent gcc 4.9 optimizer bug */
|
---|
56 | dummy_zfree_string = (char *) &inptr;
|
---|
57 |
|
---|
58 | #ifdef __clang__
|
---|
59 | dummy_zfree_str[0] = '\0';
|
---|
60 | free (dummy_zfree_str);
|
---|
61 | #else
|
---|
62 | str[0] = '\0';
|
---|
63 | free (inptr);
|
---|
64 | #endif
|
---|
65 | return;
|
---|
66 | }
|
---|
67 | void zAVL_string_reset (zAVLTree * tree)
|
---|
68 | {
|
---|
69 | if (tree)
|
---|
70 | zAVLFreeTree (tree, zfree_string);
|
---|
71 | return;
|
---|
72 | }
|
---|
73 | int zAVL_string_set (zAVLTree ** tree, const char * key)
|
---|
74 | {
|
---|
75 | if (tree && key)
|
---|
76 | {
|
---|
77 | zAVLTree * itree = (*tree);
|
---|
78 | if (!itree)
|
---|
79 | {
|
---|
80 | itree = zAVLAllocTree (zstring_key, zAVL_KEY_STRING);
|
---|
81 | if (!itree)
|
---|
82 | {
|
---|
83 | return -1;
|
---|
84 | }
|
---|
85 | }
|
---|
86 | *tree = itree;
|
---|
87 | return zAVLInsert (itree, strdup(key));
|
---|
88 | }
|
---|
89 | return -1;
|
---|
90 | }
|
---|
91 | char * zAVL_string_get (zAVLTree * tree, const char * key)
|
---|
92 | {
|
---|
93 | /* zAVLSearch() checks for NULL tree
|
---|
94 | */
|
---|
95 | if (key)
|
---|
96 | {
|
---|
97 | return ((char *) zAVLSearch (tree, key));
|
---|
98 | }
|
---|
99 | return NULL;
|
---|
100 | }
|
---|
101 | void zAVL_string_del (zAVLTree * tree, const char * key)
|
---|
102 | {
|
---|
103 | /* zAVLSearch() checks for NULL tree
|
---|
104 | */
|
---|
105 | if (key)
|
---|
106 | {
|
---|
107 | char * item = ((char *) zAVLSearch (tree, key));
|
---|
108 | if (item)
|
---|
109 | {
|
---|
110 | zAVLDelete(tree, key);
|
---|
111 | zfree_string(item);
|
---|
112 | }
|
---|
113 | }
|
---|
114 | return;
|
---|
115 | }
|
---|
116 |
|
---|
117 |
|
---|
118 |
|
---|
119 | /* Wed Nov 23 17:57:42 CET 2005 rw: introduce third argument in
|
---|
120 | * zAVLCloseSearchNode() to avoid redundant strcmp
|
---|
121 | */
|
---|
122 | static zAVLNode *zAVLCloseSearchNode (zAVLTree const *avltree, zAVLKey key,
|
---|
123 | int * ok);
|
---|
124 | static void zAVLRebalanceNode (zAVLTree *avltree, zAVLNode *avlnode);
|
---|
125 | static void zAVLFreeBranch (zAVLNode *avlnode, void (freeitem)(void *item));
|
---|
126 | static void zAVLFillVacancy (zAVLTree *avltree,
|
---|
127 | zAVLNode *origparent, zAVLNode **superparent,
|
---|
128 | zAVLNode *left, zAVLNode *right);
|
---|
129 |
|
---|
130 | #define MAX(x, y) ((x) > (y) ? (x) : (y))
|
---|
131 | #define MIN(x, y) ((x) < (y) ? (x) : (y))
|
---|
132 | #define L_DEPTH(n) ((n)->left ? (n)->left->depth : 0)
|
---|
133 | #define R_DEPTH(n) ((n)->right ? (n)->right->depth : 0)
|
---|
134 | #define CALC_DEPTH(n) (MAX(L_DEPTH(n), R_DEPTH(n)) + 1)
|
---|
135 |
|
---|
136 | #define ZAVL_OK 1
|
---|
137 | #define ZAVL_NO 0
|
---|
138 |
|
---|
139 | /* The comparison function. Was a macro, but this allows for more
|
---|
140 | * flexibility (non-string keys). The key is a (void *) now, and
|
---|
141 | * the type is stored in the zAVLTree struct. Oct 21, 2011, rw
|
---|
142 | */
|
---|
143 | static int zAVLKey_cmp(const zAVLTree * tree, zAVLKey a, zAVLKey b)
|
---|
144 | {
|
---|
145 | if (tree->keytype == zAVL_KEY_STRING)
|
---|
146 | {
|
---|
147 | return (strcmp((char*)a, (char *)b));
|
---|
148 | }
|
---|
149 | else /* zAVL_KEY_INT */
|
---|
150 | {
|
---|
151 | int x = *((int *)a);
|
---|
152 | int y = *((int *)b);
|
---|
153 |
|
---|
154 | if (x > y) return 1;
|
---|
155 | else if (x < y) return -1;
|
---|
156 | else return 0;
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | /*
|
---|
161 | * AVLAllocTree:
|
---|
162 | * Allocate memory for a new AVL tree and set the getkey function for
|
---|
163 | * that tree. The getkey function should take an item and return an
|
---|
164 | * AVLKey that is to be used for indexing this object in the AVL tree.
|
---|
165 | * On success, a pointer to the malloced AVLTree is returned. If there
|
---|
166 | * was a malloc failure, then NULL is returned.
|
---|
167 | */
|
---|
168 | zAVLTree *zAVLAllocTree (zAVLKey (*getkey)(void const *item), int keytype)
|
---|
169 | {
|
---|
170 | zAVLTree *rc;
|
---|
171 |
|
---|
172 | rc = calloc(1, sizeof(zAVLTree));
|
---|
173 | if (rc == NULL)
|
---|
174 | return NULL;
|
---|
175 |
|
---|
176 | rc->top = NULL;
|
---|
177 | rc->count = 0;
|
---|
178 | rc->getkey = getkey;
|
---|
179 | rc->keytype = keytype;
|
---|
180 | return rc;
|
---|
181 | }
|
---|
182 |
|
---|
183 |
|
---|
184 | /*
|
---|
185 | * AVLFreeTree:
|
---|
186 | * Free all memory used by this AVL tree. If freeitem is not NULL, then
|
---|
187 | * it is assumed to be a destructor for the items reference in the AVL
|
---|
188 | * tree, and they are deleted as well.
|
---|
189 | */
|
---|
190 | void zAVLFreeTree (zAVLTree *avltree, void (freeitem)(void *item))
|
---|
191 | {
|
---|
192 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
193 | return;
|
---|
194 | if (avltree->top)
|
---|
195 | zAVLFreeBranch(avltree->top, freeitem);
|
---|
196 | free(avltree);
|
---|
197 | }
|
---|
198 |
|
---|
199 |
|
---|
200 | /*
|
---|
201 | * AVLInsert:
|
---|
202 | * Create a new node and insert an item there.
|
---|
203 | *
|
---|
204 | * Returns 0 on success,
|
---|
205 | * -1 on malloc failure,
|
---|
206 | * 3 if duplicate key.
|
---|
207 | */
|
---|
208 | int zAVLInsert (zAVLTree *avltree, void *item)
|
---|
209 | {
|
---|
210 | zAVLNode *newnode;
|
---|
211 | zAVLNode *node;
|
---|
212 | zAVLNode *balnode;
|
---|
213 | zAVLNode *nextbalnode;
|
---|
214 | int ok;
|
---|
215 |
|
---|
216 | newnode = calloc(1, sizeof(zAVLNode));
|
---|
217 | if (newnode == NULL)
|
---|
218 | return -1;
|
---|
219 |
|
---|
220 | newnode->key = avltree->getkey(item);
|
---|
221 | newnode->item = item;
|
---|
222 | newnode->depth = 1;
|
---|
223 | newnode->left = NULL;
|
---|
224 | newnode->right = NULL;
|
---|
225 | newnode->parent = NULL;
|
---|
226 |
|
---|
227 | if (avltree->top != NULL) {
|
---|
228 | node = zAVLCloseSearchNode(avltree, newnode->key, &ok);
|
---|
229 |
|
---|
230 | if (ok == ZAVL_OK) { /* exists already */
|
---|
231 | free(newnode);
|
---|
232 | return 3;
|
---|
233 | }
|
---|
234 |
|
---|
235 | newnode->parent = node;
|
---|
236 |
|
---|
237 | if (zAVLKey_cmp(avltree, newnode->key, node->key) < 0) {
|
---|
238 | node->left = newnode;
|
---|
239 | node->depth = CALC_DEPTH(node);
|
---|
240 | }
|
---|
241 |
|
---|
242 | else {
|
---|
243 | node->right = newnode;
|
---|
244 | node->depth = CALC_DEPTH(node);
|
---|
245 | }
|
---|
246 |
|
---|
247 | for (balnode = node->parent; balnode; balnode = nextbalnode) {
|
---|
248 | nextbalnode = balnode->parent;
|
---|
249 | zAVLRebalanceNode(avltree, balnode);
|
---|
250 | }
|
---|
251 | }
|
---|
252 |
|
---|
253 | else {
|
---|
254 | avltree->top = newnode;
|
---|
255 | }
|
---|
256 |
|
---|
257 | avltree->count++;
|
---|
258 | return 0;
|
---|
259 | }
|
---|
260 |
|
---|
261 |
|
---|
262 | /*
|
---|
263 | * zAVLSearch:
|
---|
264 | * Return a pointer to the item with the given key in the AVL tree. If
|
---|
265 | * no such item is in the tree, then NULL is returned.
|
---|
266 | */
|
---|
267 | void *zAVLSearch (zAVLTree const *avltree, zAVLKey key)
|
---|
268 | {
|
---|
269 | zAVLNode *node;
|
---|
270 | int ok;
|
---|
271 |
|
---|
272 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
273 | return NULL;
|
---|
274 |
|
---|
275 | node = zAVLCloseSearchNode(avltree, key, &ok);
|
---|
276 |
|
---|
277 | if (node && ok == ZAVL_OK)
|
---|
278 | return node->item;
|
---|
279 |
|
---|
280 | return NULL;
|
---|
281 | }
|
---|
282 |
|
---|
283 |
|
---|
284 | /*
|
---|
285 | * zAVLDelete:
|
---|
286 | * Deletes the node with the given key. Does not delete the item at
|
---|
287 | * that key. Returns 0 on success and -1 if a node with the given key
|
---|
288 | * does not exist.
|
---|
289 | */
|
---|
290 | int zAVLDelete (zAVLTree *avltree, zAVLKey key)
|
---|
291 | {
|
---|
292 | zAVLNode *avlnode;
|
---|
293 | zAVLNode *origparent;
|
---|
294 | zAVLNode **superparent;
|
---|
295 | int ok;
|
---|
296 |
|
---|
297 | avlnode = zAVLCloseSearchNode(avltree, key, &ok);
|
---|
298 | if (avlnode == NULL || ok == ZAVL_NO) /* does not exist */
|
---|
299 | return -1;
|
---|
300 |
|
---|
301 | origparent = avlnode->parent;
|
---|
302 |
|
---|
303 | if (origparent) {
|
---|
304 | if (zAVLKey_cmp(avltree, avlnode->key, avlnode->parent->key) < 0)
|
---|
305 | superparent = &(avlnode->parent->left);
|
---|
306 | else
|
---|
307 | superparent = &(avlnode->parent->right);
|
---|
308 | }
|
---|
309 | else
|
---|
310 | superparent = &(avltree->top);
|
---|
311 |
|
---|
312 | zAVLFillVacancy(avltree, origparent, superparent,
|
---|
313 | avlnode->left, avlnode->right);
|
---|
314 | free(avlnode);
|
---|
315 | avltree->count--;
|
---|
316 | return 0;
|
---|
317 | }
|
---|
318 |
|
---|
319 |
|
---|
320 | /*
|
---|
321 | * zAVLFirst:
|
---|
322 | * Initializes an zAVLCursor object and returns the item with the lowest
|
---|
323 | * key in the zAVLTree.
|
---|
324 | */
|
---|
325 | void *zAVLFirst (zAVLCursor *avlcursor, zAVLTree const *avltree)
|
---|
326 | {
|
---|
327 | const zAVLNode *avlnode;
|
---|
328 |
|
---|
329 | if (NULL == avltree) /* R.W. Mon Nov 19 21:15:44 CET 2001 */
|
---|
330 | return NULL;
|
---|
331 |
|
---|
332 | avlcursor->avltree = avltree;
|
---|
333 |
|
---|
334 | if (avltree->top == NULL) {
|
---|
335 | avlcursor->curnode = NULL;
|
---|
336 | return NULL;
|
---|
337 | }
|
---|
338 |
|
---|
339 | for (avlnode = avltree->top;
|
---|
340 | avlnode->left != NULL;
|
---|
341 | avlnode = avlnode->left);
|
---|
342 | avlcursor->curnode = avlnode;
|
---|
343 | return avlnode->item;
|
---|
344 | }
|
---|
345 |
|
---|
346 |
|
---|
347 | /*
|
---|
348 | * zAVLNext:
|
---|
349 | * Called after an zAVLFirst() call, this returns the item with the least
|
---|
350 | * key that is greater than the last item returned either by zAVLFirst()
|
---|
351 | * or a previous invokation of this function.
|
---|
352 | */
|
---|
353 | void *zAVLNext (zAVLCursor *avlcursor)
|
---|
354 | {
|
---|
355 | const zAVLNode *avlnode;
|
---|
356 |
|
---|
357 | avlnode = avlcursor->curnode;
|
---|
358 |
|
---|
359 | if (avlnode->right != NULL) {
|
---|
360 | for (avlnode = avlnode->right;
|
---|
361 | avlnode->left != NULL;
|
---|
362 | avlnode = avlnode->left);
|
---|
363 | avlcursor->curnode = avlnode;
|
---|
364 | return avlnode->item;
|
---|
365 | }
|
---|
366 |
|
---|
367 | while (avlnode->parent && avlnode->parent->left != avlnode) {
|
---|
368 | avlnode = avlnode->parent;
|
---|
369 | }
|
---|
370 |
|
---|
371 | if (avlnode->parent == NULL) {
|
---|
372 | avlcursor->curnode = NULL;
|
---|
373 | return NULL;
|
---|
374 | }
|
---|
375 |
|
---|
376 | avlcursor->curnode = avlnode->parent;
|
---|
377 | return avlnode->parent->item;
|
---|
378 | }
|
---|
379 |
|
---|
380 |
|
---|
381 | /*
|
---|
382 | * zAVLCloseSearchNode:
|
---|
383 | * Return a pointer to the node closest to the given key.
|
---|
384 | * Returns NULL if the AVL tree is empty.
|
---|
385 | */
|
---|
386 | static zAVLNode *zAVLCloseSearchNode (zAVLTree const *avltree, zAVLKey key,
|
---|
387 | int * ok)
|
---|
388 | {
|
---|
389 | zAVLNode *node;
|
---|
390 |
|
---|
391 | *ok = ZAVL_NO;
|
---|
392 |
|
---|
393 | node = avltree->top;
|
---|
394 |
|
---|
395 | if (!node)
|
---|
396 | return NULL;
|
---|
397 |
|
---|
398 | for (;;) {
|
---|
399 | if (!zAVLKey_cmp(avltree, node->key, key))
|
---|
400 | {
|
---|
401 | *ok = ZAVL_OK;
|
---|
402 | return node;
|
---|
403 | }
|
---|
404 |
|
---|
405 | if (zAVLKey_cmp(avltree, node->key, key) < 0) {
|
---|
406 | if (node->right)
|
---|
407 | node = node->right;
|
---|
408 | else
|
---|
409 | return node;
|
---|
410 | }
|
---|
411 |
|
---|
412 | else {
|
---|
413 | if (node->left)
|
---|
414 | node = node->left;
|
---|
415 | else
|
---|
416 | return node;
|
---|
417 | }
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 |
|
---|
422 | /*
|
---|
423 | * zAVLRebalanceNode:
|
---|
424 | * Rebalances the AVL tree if one side becomes too heavy. This function
|
---|
425 | * assumes that both subtrees are AVL trees with consistant data. This
|
---|
426 | * function has the additional side effect of recalculating the depth of
|
---|
427 | * the tree at this node. It should be noted that at the return of this
|
---|
428 | * function, if a rebalance takes place, the top of this subtree is no
|
---|
429 | * longer going to be the same node.
|
---|
430 | */
|
---|
431 | static void zAVLRebalanceNode (zAVLTree *avltree, zAVLNode *avlnode)
|
---|
432 | {
|
---|
433 | long depthdiff;
|
---|
434 | zAVLNode *child;
|
---|
435 | zAVLNode *gchild;
|
---|
436 | zAVLNode *origparent;
|
---|
437 | zAVLNode **superparent;
|
---|
438 |
|
---|
439 | origparent = avlnode->parent;
|
---|
440 |
|
---|
441 | if (origparent) {
|
---|
442 | if (zAVLKey_cmp(avltree, avlnode->key, avlnode->parent->key) < 0)
|
---|
443 | superparent = &(avlnode->parent->left);
|
---|
444 | else
|
---|
445 | superparent = &(avlnode->parent->right);
|
---|
446 | }
|
---|
447 | else
|
---|
448 | superparent = &(avltree->top);
|
---|
449 |
|
---|
450 | depthdiff = R_DEPTH(avlnode) - L_DEPTH(avlnode);
|
---|
451 |
|
---|
452 | if (depthdiff <= -2 && avlnode->left) {
|
---|
453 | child = avlnode->left;
|
---|
454 |
|
---|
455 | if (L_DEPTH(child) >= R_DEPTH(child)) {
|
---|
456 | avlnode->left = child->right;
|
---|
457 | if (avlnode->left != NULL)
|
---|
458 | avlnode->left->parent = avlnode;
|
---|
459 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
460 | child->right = avlnode;
|
---|
461 | if (child->right != NULL)
|
---|
462 | child->right->parent = child;
|
---|
463 | child->depth = CALC_DEPTH(child);
|
---|
464 | *superparent = child;
|
---|
465 | child->parent = origparent;
|
---|
466 | }
|
---|
467 |
|
---|
468 | else {
|
---|
469 | gchild = child->right;
|
---|
470 | if (gchild)
|
---|
471 | {
|
---|
472 | avlnode->left = gchild->right;
|
---|
473 | if (avlnode->left != NULL)
|
---|
474 | avlnode->left->parent = avlnode;
|
---|
475 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
476 | child->right = gchild->left;
|
---|
477 | if (child->right != NULL)
|
---|
478 | child->right->parent = child;
|
---|
479 | child->depth = CALC_DEPTH(child);
|
---|
480 | gchild->right = avlnode;
|
---|
481 | if (gchild->right != NULL)
|
---|
482 | gchild->right->parent = gchild;
|
---|
483 | gchild->left = child;
|
---|
484 | if (gchild->left != NULL)
|
---|
485 | gchild->left->parent = gchild;
|
---|
486 | gchild->depth = CALC_DEPTH(gchild);
|
---|
487 | *superparent = gchild;
|
---|
488 | gchild->parent = origparent;
|
---|
489 | }
|
---|
490 | }
|
---|
491 | }
|
---|
492 |
|
---|
493 | else if (depthdiff >= 2 && avlnode->right) {
|
---|
494 | child = avlnode->right;
|
---|
495 |
|
---|
496 | if (R_DEPTH(child) >= L_DEPTH(child)) {
|
---|
497 | avlnode->right = child->left;
|
---|
498 | if (avlnode->right != NULL)
|
---|
499 | avlnode->right->parent = avlnode;
|
---|
500 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
501 | child->left = avlnode;
|
---|
502 | if (child->left != NULL)
|
---|
503 | child->left->parent = child;
|
---|
504 | child->depth = CALC_DEPTH(child);
|
---|
505 | *superparent = child;
|
---|
506 | child->parent = origparent;
|
---|
507 | }
|
---|
508 |
|
---|
509 | else {
|
---|
510 | gchild = child->left;
|
---|
511 | if (gchild)
|
---|
512 | {
|
---|
513 | avlnode->right = gchild->left;
|
---|
514 | if (avlnode->right != NULL)
|
---|
515 | avlnode->right->parent = avlnode;
|
---|
516 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
517 | child->left = gchild->right;
|
---|
518 | if (child->left != NULL)
|
---|
519 | child->left->parent = child;
|
---|
520 | child->depth = CALC_DEPTH(child);
|
---|
521 | gchild->left = avlnode;
|
---|
522 | if (gchild->left != NULL)
|
---|
523 | gchild->left->parent = gchild;
|
---|
524 | gchild->right = child;
|
---|
525 | if (gchild->right != NULL)
|
---|
526 | gchild->right->parent = gchild;
|
---|
527 | gchild->depth = CALC_DEPTH(gchild);
|
---|
528 | *superparent = gchild;
|
---|
529 | gchild->parent = origparent;
|
---|
530 | }
|
---|
531 | }
|
---|
532 | }
|
---|
533 |
|
---|
534 | else {
|
---|
535 | avlnode->depth = CALC_DEPTH(avlnode);
|
---|
536 | }
|
---|
537 | }
|
---|
538 |
|
---|
539 |
|
---|
540 | /*
|
---|
541 | * zAVLFreeBranch:
|
---|
542 | * Free memory used by this node and its item. If the freeitem argument
|
---|
543 | * is not NULL, then that function is called on the items to free their
|
---|
544 | * memory as well. In other words, the freeitem function is a
|
---|
545 | * destructor for the items in the tree.
|
---|
546 | */
|
---|
547 | static void zAVLFreeBranch (zAVLNode *avlnode, void (freeitem)(void *item))
|
---|
548 | {
|
---|
549 | if (avlnode->left)
|
---|
550 | zAVLFreeBranch(avlnode->left, freeitem);
|
---|
551 | if (avlnode->right)
|
---|
552 | zAVLFreeBranch(avlnode->right, freeitem);
|
---|
553 | if (freeitem) {
|
---|
554 | freeitem(avlnode->item);
|
---|
555 | avlnode->item = NULL;
|
---|
556 | }
|
---|
557 | free(avlnode);
|
---|
558 | }
|
---|
559 |
|
---|
560 |
|
---|
561 | /*
|
---|
562 | * zAVLFillVacancy:
|
---|
563 | * Given a vacancy in the AVL tree by it's parent, children, and parent
|
---|
564 | * component pointer, fill that vacancy.
|
---|
565 | */
|
---|
566 | static void zAVLFillVacancy (zAVLTree *avltree,
|
---|
567 | zAVLNode *origparent, zAVLNode **superparent,
|
---|
568 | zAVLNode *left, zAVLNode *right)
|
---|
569 | {
|
---|
570 | zAVLNode *avlnode;
|
---|
571 | zAVLNode *balnode;
|
---|
572 | zAVLNode *nextbalnode;
|
---|
573 |
|
---|
574 | if (left == NULL) {
|
---|
575 | if (right)
|
---|
576 | right->parent = origparent;
|
---|
577 |
|
---|
578 | *superparent = right;
|
---|
579 | balnode = origparent;
|
---|
580 | }
|
---|
581 |
|
---|
582 | else {
|
---|
583 | for (avlnode = left; avlnode->right != NULL; avlnode = avlnode->right);
|
---|
584 |
|
---|
585 | if (avlnode == left) {
|
---|
586 | balnode = avlnode;
|
---|
587 | }
|
---|
588 | else {
|
---|
589 | balnode = avlnode->parent;
|
---|
590 | balnode->right = avlnode->left;
|
---|
591 | if (balnode->right != NULL)
|
---|
592 | balnode->right->parent = balnode;
|
---|
593 | avlnode->left = left;
|
---|
594 | left->parent = avlnode;
|
---|
595 | }
|
---|
596 |
|
---|
597 | avlnode->right = right;
|
---|
598 | if (right != NULL)
|
---|
599 | right->parent = avlnode;
|
---|
600 | *superparent = avlnode;
|
---|
601 | avlnode->parent = origparent;
|
---|
602 | }
|
---|
603 |
|
---|
604 | for (; balnode; balnode = nextbalnode) {
|
---|
605 | nextbalnode = balnode->parent;
|
---|
606 | zAVLRebalanceNode(avltree, balnode);
|
---|
607 | }
|
---|
608 | }
|
---|