Samhain

Sambhain
Copyright © 2002-2006 Rainer Wichmann

Permission is granted to copy, distribute and/or modify this document under the termsGitheree Documentation Licenseersion 1.1

or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
You may obtain a copy of thEeNU Free Documentation Liceng®m the Free Software Foundation by visiting their Web site
(http://www.fsf.org) or by writing to: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Table of Contents

I o o 18 ox 1T o TSP UE SRRSO 1
2 @%oTaq] o111 TaTo IF=Ta Lo [10Ty r= 1 1 T R 2
2.1 OVEIVIEW. ...ttt sttt b ettt st e st ket et e st s e e st seebene e ke ne et e st et et et eneebenestenens 2
N = =T 01T =T o 1=) 3
2.3. DOWNIOA @NA EXITACL.......ciriitiirieirieerieie ettt sttt sb e seene s 3
2.4, CoNfigUIING thE SOUICE......c.eciieieereeeeee et st see e e esennesneneenen 4
2 TR = 1 1o TP 6
200G 1 1 = | 7
2 R O U1 (o 1 .2 = 8
2.8. Initialize the baseline database.........ccocvirirererec e 9
P2 S U1 TS 0] = o T 9
2.10. Files and dir€Ctory layOUL...........cccoeirririeinnersee et 10
P2 I I TS =] €S = SRR STSN 12
3. GENETAl USAQGE NOLES....c.ecuiieetiieeterietee sttt sttt sttt ettt b et bt et b et b et b et bt b e b e 15
10 T I o (01T (o 101V (PPN 15
3.2. Using daemontool (or similar UtilitieS).........ccccooeieiereirre e 15
3.3. Controlling the dABMOL........c.ccoiiii e e 15
RIS o [T = OSSPSR 16
3.5, PID I8ttt et sttt ne st n e et et e te e re e 17
3.6. LOQ file FOTALIONL......eeeieiee ettt s e sn 17
3.7. Updating the file signhature database..........c.cocoveiinniini e 18
3.8. Improving the signal-to-N0ISEe ratin..........cccecveceveieeieceeec e e 19
3.9. Runtime options: command-line & configuration file...........cccoovv e, 19
3.10. Support / Bugs / ProbIEMIS.......ccoieeeeeee et 19
4. Configuration of 10gQiNg faCIlItIES.........ccvieeie e 21
O I 1= o 1T - F OSSO SOPRP 21
4.2. Available 10gging faCilities........c.ccviiiiierereieeece e 23
4.3. Activating logging facilities and filtering MeSsSSages.........ccocvvveverereeiesiesieveseeeeesie s 24
o 1= V] OSSO PSTPSTPPRPN 26
T 1o o [] SR 30
4.6, LOG SBIVEL....ceiteteeeeet ettt b e et b bRt b b et h R b e e nennenne 32
O o eq =Y 1 F= U = Vo 1 1= SR 32
T o] =T][TSR 33
e T o =[S 33
4.10. Using samhain With NAGIQS.ccerriiriiirieirieeseee s 37
2 S V] (o o TSP PTTTOTUPTPTPSTPTSTPRRTPRIN 38
S T L I BT -1 o T L = P RSTSN 38
5. Configuration — samhain, the file MONITOL............cooiiiiiiie e 42
5.1 USBQE OVEIVIEW......ceeieeeeieuieterte et eee e ettt tesaesee e eseebesseseesaense e eneeaesbeseeseeseeneenesnesananens 42
5.2. Available checksSum fUNCHIONS.........cooii e 43
5.3, FilE SIGNATUIES.....ccuiitieee ettt bbbttt b b e se e e neeaesae e 43
5.4. Defining which files/directories to MONItOL.........cociriiiiireee e 44
5.5. Excluding files and/or subdirectories (All @XCePL .o...). o 52
5.6. TIMING fil@ CRECKSc.uieee e 53
5.7. Initializing, updating, Of CNECKING........ccceoiririrerieeeerere e 54

5.8. The file signature database...........ccocorririinnine e 55

5.9. Checking the file system for SUID/SGID DiNanes.........cccveereenrenneneseeseeseeee 55
5.10. Detecting Kernel rOOLKITS..........cociieiieercereeieresee et 58
5.11. Monitoring 10gin/logOUL EVENLS........cccoeiriiierieeree ettt 61
5.12. Checking mounted filesystem poliCies........cccooierreineiiieeseeesee e 62
5.13. Checking sensitive files owned DY USEIS........ccoeiiiieiiicnereseese e 63
B5.14. MOAUIBS ...ttt et e et e ae b e sbeseese e e eneeneenesaeas 64
5.15. PerfOrmance tUNING.......cccoriiiiiiiieieeene sttt sb e st e e e aesae e 64
B. YUIE, TNE 100 SEIVEE. ...ttt bbb et b e bt ae st e et sbeeeas 66
L B 1T o 1= = | USSR TP PTRRUSTURURRIN 66
6.2. Important iNStallation NOLES...........ccveiieieece e e 67
ORI (= To [y (=1] o = o] = 5) S 68
6.4. Enabling l0gging t0 the SEIVEL.........ccoieeeee et s 69
6.5. Enabling baseline database / configuration file download from the server............. 70
6.6. Rules for logging Of ClIENt MESSAQES......ccceiveciereiieese et 72
6.7. Detecting 'dead’ ClIENTS.........cccv it st sne s 72
6.8. The HTIML SErVEr StatUS PAGE....cceireieeeeeetesierieseeseesestesieseestessesessessessesseseesssssssessessessens 73
LI TR @ 1] £ To) ST 74
6.10. Restrict access with libwrap (ICP WIaPPELS).....ccvcveererirerereeieee st sesieseeeeesese e 76
6.11. Sending coMMAaNdS t0 CIENLS......ccvcieiei e snen 76
L% 22 SV ToTo i (o T o 11 T SR 77
6.13. SEIVEr-t0-SEIVEN FEIAY.....ceiiiueerietriee ettt st 78
6.14. PerformancCe tUNING........cocoo it sttt st s 78
7. HOOKS fOr EXTEINAl PrOQIAMS.c.civiiiieiiieie ettt sttt s e 80
7L PP ettt bbb bR R bt bbbttt pene e 80
7.2. SYSteM V MESSAJE QUELLE.......eiuieireierieste et se e ss s sre s e e e s sresresresnessesesnesnesneas 80
7.3. Calling external ProgramiS.........cocoi ittt 80
8. Additional Features — Signed Configuration/Database Files............cccovnnennenieiieenn 83
8.1. The samhainadmin SCIAL.........coiiireeeee e sne 84
9. Additional Features — StEAItN...........c.oc i e 86
9.1. HIidiNg the @XECULADIE..........cciii e e 86
9.2. Packing the eXeCULADIE............cco e s 89
10. Deployment tO remMOte NOSES.......cecii ittt 91
10.1. Method A: The deployment SYSIEIM........ccvvieiiiieere e eneens 91
10.2. Method B: The native package Managel........cccceveeveerererieseeieeseeseeseeseeseessesseenes 101
ST Tod] Y20 0 L= o | T 105
0 T U= Vo =S 105
11.2. Integrity of the executalle..........cocoveeiece s 105
11.3. Client executable INtEGIILY.........coeiieirieireereeerr e 107
O S I 1= I =Y R 107
IS T 1= =T - S 107

A. List of options for the ./configure SCHPL ... 109

N I CT=T 1T - 1 R PRORSRRR 109
A.2. Optional modules to perfor additional Checks............coccoriiniinniincincceee 111
A.3. OpenPGP Signatures on Configuration/Database Eiles..........ccccoovoviiniieinccnnne 111
A.4. Client/Server CONNECTIVILY..........cireirerereeeesiee sttt seere e 112
ALD. PANS....ceicice et sttt e st st ne et et e 113
B. List of command liN@ OPLIONS........coiiiiriieie e e 115
S 1T o 1= - | TSRO 115
B.2. SAMRNAIN. ... bbb bbbt eae e 116
O TN |1 S 116
C. List of configuration file OPLIONS.........cociiiiiiieerr e e 118
ORI CT=T =T - | USSR P PSSR 118
C.2. FIlES 10 ChECK. ...ttt 119
C.3. SEVENLY Of EVENLS.....cteeeecece e e re et e e 119
C.4. Logging threShOoIAS........ccceiiieiiceeee e e s 121
C.5. Watching 10gin/logOut BVENLS.........cceieieecisesesee et s e e 121
C.6. Checking for kernel module rootKiLS..........ccoovverereererienie e 122
C.7. Checking for SUID/SGID fil@S.....cuicieire it 123
C.8. Checking for MouNt OPLIONS.........coviiiiie e 123
C.9. Checking fOr USEr files......ccoviiriiee e 124
LT O JR T- r= L L= L] = S 124
O I R 1= =1 = 1 = o U 125
LT T 1= 1 - | S 130
LG TR {1 o | S 131
D. List Of database fIeliS. ..o e 132
D20 I CT= 1T - OSSR 132
[22 /T To [SO SR 134
[JRC TS V] oo USSR 134

Chapter 1. Introduction

samhain is a data integrity and intrusion alert system suitable for single hosts as well as for large,
UNIX-based networks. samhain offers advanced features to support and facilitate centralized
monitoring.

In particular, samhain can optionally be used as a client/server system with monitoring clients on
individual hosts, and a central log server that collects the messages of all clients.

The configuration and database files for each client can be stored centrally and downloaded by clients
from the log server. Using conditionals (based on hostname, machine type, OS, and OS release, all
with regular expresions) a single configuration file for all hosts on the network can be constructed.

The client (or standalone) part is called samhain, while the server is referred to as yule. Both can run
as daemon processes.

Chapter 2. Compiling and installing

Sambhain as a client/server system: This chapter focuses on building a standalone samhain
executable. For a client/server system, client and server executable are built from the same
source, but with different options for the 'configure’ script (see Section 2.4>).

Please refer to the chapter Chapter 6 for an explanation of the client/server setup.

2.1. Overview

Download:

sh$ waget http://la-samhna.de/samhain/samhain-current.tar.gz

Extract (and verify PGP signature):
sh$ gunzip -c samhain-current.tar.gz | tar xvf -
sh$ gpg --verify samhain-N.N.N.tar.gz.asc samhain-N.N.N.tar

sh$ gunzip samhain-N.N.N.tar.gz | tar xvf -
sh$ cd samhain-N.N.N

Configure:

sh$./configure

Compile:

sh$ make

Install:

sh$ make install

Chapter 2. Compiling and installing

Customize:

sh$ vi /etc/samhainrc

Initialize the baseline database:

sh$ samhain -t init

Start the samhain daemon:

sh$ samhain -t check -D

2.2. Requirements

POSIX environment

Sambhain will only compile and run inROSIXoperating system, or an emulation thereof (e.g.
the free Cygwin POSIX emulation for Windows XP/2000).

ANSI C compiler and build system

You need arANSI C compileto compile samhain. The GNU C compiler (GCC)
(http://lwww.gnu.org/software/gcc/gec.html) from the Free Software Foundation (FSF)
(http://www.gnu.org/) is fine. If your vendor’s compiler is ANSI compliant, you should give it a
try, since it might produce faster code. Also you will need to have standard tools like make in
your PATH (the make tool is part of the POSIX standard).

[OPTIONAL] GnhuPG

If you want to use signed configuration and database files (this is an optional feature), GhuPG
(gpg) must be installed.

Chapter 2. Compiling and installing

2.3. Download and extract

The current version of samhain can be downloaded from
http://www.la-samhna.de/samhain/samhain-current.tar.gz. Older versions of samhain are available
from the online archive (http://www.la-samhna.de/samhain/archive.html). You should always make
sure that you have a complete and unmodified version of samhain. This can be done by verifying the
PGP signature (see below).

The downloaded tarball will contain exactly two files:

1. A tarball named samhain-N.N.N.tar.gz (N.N.N is the version number) containing the source
tree, and

2.the PGP signature for this tarball, i.e. a file named samhain-N.N.N.tar.gz.asc.

sh$ wget http://la-samhna.de/samhain/samhain-current.tar.gz

sh$ gunzip samhain-current.tar.gz | tar tvf -

-rw-r--r-- 500/100 920753 2004-05-24 19:57:55 samhain-1.8.8.tar.gz
-rw-r--r-- 500/100 189 2004-05-24 19:58:29 samhain-1.8.8.tar.gz.asc

You might wish to verify the PGP signature now, in order to make sure that you have received a
complete and unmodified version of samhain. All samhain releases are signed with the key
OF571F6C (Rainer Wichmann).

Key fingerprint = EF6C EF54 701A OAFD B86A F4C3 1AAD 26C8 0F57 1F6C
sh$ gpg --keyserver blackhole.pca.dfn.de --recv-keys OF571F6C

sh$ gpg --verify samhain-N.N.N.tar.gz.asc samhain-1.8.8.tar.gz

Now you can proceed to extract the source tarball:

sh$ gunzip samhain-N.N.N.tar.gz | tar tvf -

This will create a new subdirectosamhain-N.N.N under your current directory. You shoutd
into this subdirectory to proceed with configuring the source:

sh$ cd samhain-N.N.N

2.4. Configuring the source

Before you can start to compile, it is neccessary to configure the source for your particular platform
and your personal requirements. This is done by runningdh#igure in the source directory. If
you type./configure with no options, the source will get configured with the default options. In

Chapter 2. Compiling and installing

particular, a standalone version of samhain will get built which uses the Filesystem Hierarchy
Standard (FHS) for file/directory layout. Thisristthe standard GNU layout of 'everything under
Jusr/local'.

Paths: (A) samhain is a Filesystem Hierarchy Standard (FHS) compliant application. Thus the
default directory layout is not the standard GNU layout (see Section 2.10>).

(B) samhain has a concept of trusted users, and will refuse to run if the path to critical files is
writeable by users not in its list of trusted users (default: root, and the user who has started
samhain). Please read Section 2.10.1> for details.

To change the defaultdconfigure accepts a variety of command-line options and environment
variables (use/configure --helpfor a complete list). The available command line options are listed
and explained ippendix A>.

To configure a standalone version of samhain:

sh$./configure [more options]

Important remark on client/server use: Please read Chapter 6> if you intend to use samhain
as a client/server system. Things will not work automagically just because you compiled a client
and a server version of samhain. In particular, clients need to authenticate themselves to the
server, and special configure options are required if you want to keep the configuration file(s)
and the baseline database(s) on the central server.

To configure a client version of samhain that can connect to a central server:

sh$./configure --enable-network=client [more options]

To configure a server version of samhain that will act as a central log server:

sh$./configure --enable-network=server [more options]

2.4.1. Some more configuration options

If you want to use any options/modules that are not enabled by default (e.g. because the majority of
users do not require them, or because they require additional programs and/or libraries), at this point
you need to specify such options:

Chapter 2. Compiling and installing

« To compile in the module to check for SUID files (seection 5.8) use./configure
--with-suidcheck

« To compile in the module to detect kernel modifications/rootkits &saion 5.16) use
Jconfigure --with-kcheck=/path/to/System.map

- To compile in the module to detect kernel modifications/rootkits &esaion 5.16) use
.Jconfigure --with-kcheck=path/to/System.map

« To compile in the module to monitor login/logout events (Seetion 5.1%) use./configure
--enable-login-watch

« To compile in the module to check mount options for mounted filesystem$éseton 5.12) use
Jconfigure --enable-mounts-check

- To compile in the module to specify files relative to user home directoriesS@etton 5.13) use
Jconfigure --enable-userfiles

- To compile in code for logging to an RDMS, (sBection 4.12) use./configure
--enable-xml-log --with-databasesracle/mysql/postgresq|

- To compile in code for logging to the Prelude IDS, (S==tion 4.$) use./configure
--with-prelude

- To use PGP-signed configuration files, (Sapter &) use./configure
--with-gpg=/path/to/gpg . Please reviekChapter & for further information and additional
options to compile in the key fingerprint and/or the checksum offiteexecutable.

- To compile samhain for use of the 'stealth’ options to hide its presence, please Givapter &
for the available options.

- To configure a server version of samhain that will act as a central log servefcoiségure
--enable-network=server

- To configure a client version of samhain that can connect to a central servdgardegyure
--enable-network=client Please refer to the chap®@&hapter &or an explanation of the
client/server setupn particular further options that you need if you want to store configuration
files and baseline databases on the sefgeeSection 6.5).

2.5. Build

After configuring the source, to build samhain you just have to type the command:

sh$ make

The standalone/client executable (samhain) and the log server (yule) cannnot be compiled
simultaneously. You need to ruftonfigure && make separately for both.

Chapter 2. Compiling and installing

If you want to use your native package manager for installation, you might rather want to build a
binary package. samhain has support for RPM (rpm), Debian (deb), Gentoo (tbz2), HP-UX (depot),
and Solaris packages. Instead of simply typimgke, you need to type:

sh$ make rpm|deb]|tbz2|depot|solaris-pkg

This will create a custom binary package according to the options that you used when configuring
the source (see previous section). For more detailsSeeton 10.2.

If you don’t want to include documentation, you can instead use:

sh$ make rpm-light|deb-light|depot-light|tbz2-light|solaris-pkg-light

Finally, the Makefile supports building a portable (Unix) binary installer package based on the
makeself installer ((c) 1998-2004 Stephane Peter). There will be no documentation included. Just

type:

sh$ make run

2.6. Install

After successful compilation, you can install samhain by typing:

sh$ make install
The installation routine will not overwrite your configuration file from a previous installation.

Executables will be stripped upon installation. On Linux i386 and FreeBSD i386sthip utility
(copyright 1999 by Brian Raiter, under the GNU GPL) will be used to strip the executable even
more, to prevent debugging with the GNJdb debugger.

After installation, you will be offered to rumake install-bootin order to install the init scripts that
are required to start samhain automatically when your system (re-)boots. For many operating
systems (Linux, *BSD, Solaris, HP-UX, IRIXEonfigure will generate init scripts, anthake
install-boot will figure out which of them to install, and where (if the correct distribution cannot be
determined, none of them will be installed).

sh$ make install-boot

2.6.1. Important make targets

sh$ make install

Chapter 2. Compiling and installing

Create the required directories (if not existing already), and install the compiled executable and the
configuration file.

bash$ make DESTDIR=/somedir install

Install as if/somedir is the root directory. Useful for creating packages or installing for chroot
(server).

sh$ make install-boot

Install runlevel start/stop scripts or create inittab entry (AlIX) in order to start the daemon upon
system boot. Supported on Linux, *BSD, Solaris, HP-UX, AIX(*), IRIX(*) [(*) untested].

sh$ make uninstall

Uninstall the executable and remove directories if empty. Does not uninstall the configuration file.

sh$ make purge

As make uninstall, but also remove the the configuration file.
sh$ make uninstall-boot
Uninstall the runlevel start/stop scripts.

Tip: You can save the script samhain-install.sh and use it for uninstalling if you ever want to
remove samhain:

sh$ samhain-install.sh purge
sh$ samhain-install.sh uninstall-boot

2.7. Customize

samhain comes with default configuration files for several operating systemisainrc.linux ,

samhainrc.solaris , samhainrc.freebsd , samhainrc.aix5.2.0 (andyulerc for the
server). The installation routine will choose the one matching closest your system, or fall back to
samhainrc.linux , if no good match could be found. However, all these configuration files are kept

very general, and most probably you want to adjust settings like:

- which files/directories should be checked

Chapter 2. Compiling and installing

« which logging facilities should be used

The default location of the configuration file/igc/samhainrc (seeSection 2.168). To
customize, type:

sh$ vi /etc/samhainrc

The default configuration file is heavily commented to help you. For a list of all runtime
configuration directives, please have a loolkppendix C-.

If you have any typos or other errors in your configuration file, samhain will log warning messages
upon startup including the corresponding line number of the configuration file.

2.8. Initialize the baseline database

samhain works by comparing the present state of the filesystem agains a baseline database. Of
course, this baseline database must be initialized first (and preferably from a known good state !). To
perform the initialization (i.e. create the baseline database), type:

sh$ samhain -t init -p info
(with -p info, messages of severity 'info’ or higher will be printed to your terminal/console).

If the database file already existgmhain -t init will appendto it. This is a feature that is intended
to help you operating samhain in a slightly more stealthy way: you can append the database e.g. to a
JPEG picture (and the picture will still display normally - JPEG ignores appended 'garbage’).

Note:: Itis usually an error to run samhain -t init twice, because (a) it will append a second
baseline database to the existing one, and (b) only the first baseline database will be used. Use
samhain -t update for updating the baseline database. Delete or rename the baseline database
file if you really want to run samhain -t init a second time.

2.9. Run samhain

After successful initialization of the baseline database, you can run samhain in 'check’ mode by
typing:

sh$ samhain -t check

To run samhain as a daemon, you can either use the command line option '-D’, or set daemon mode
in the configuration file with the option 'Daemon=yes’.

Chapter 2. Compiling and installing
2.10. Files and directory layout

Tip: samhain has its own set of trusted users. Paths to critical files (e.g. the configuration file)
must be writeable by trusted users only. Failure to ensure this (e.g. by compiling in an appropriate
set of trusted users) is one of the most frequent reasons for problems. See below for details.

2.10.1. Trusted users and trusted paths

- Trusted userareroot and theeffective useof the process (usually, the effective user will be root
herself). Additional trusted users can be defined in the configuration file (seeS8etian 4.5or
an example), or at compile time, with the option

bash$./configure --with-trusted=0,...

« A trusted paths a path with all elements writeable only by trusted users. samhain requires the
paths to the configuration and log file to be trusted paths, as well as the path to the pid file.

If a path element is group writeable, all group members must be trusted. If the path to the
configuration file itself is writeable by other users thiaat and theeffective usethese must be
defined as trusted already at compile time.

Note: The list of group members in /etc/group may be incomplete or even empty. samhain will
check /etc/passwd (where each user has a GID field) in addition to /etc/group to find all
members of a group.

2.10.2. Directory layout

samhain conforms to the FHS, which mandates a directory layout that is different from the default
GNU layout (everything in subdirectories undetc/local).

Tip: There is an option ./configure --enable-install-name=NAME When this option is used, not
only the executable is installed as NAME, but also in all the paths, samhain is replaced with
NAME.

Note: For the yule server, replace samhain with yule in the paths explained below.

The following table explains which directory layout results frdoonfigure --prefix=PREFIX

shindir mandir sysconfdir localstatedir

10

Chapter 2. Compiling and installing

sbhindir mandir sysconfdir localstatedir
PREFIX (none)

/usr/local/sbin lusr/local/man letc Ivar

PREFIX USR (all capital)

/usr/sbin /usr/share/man letc Ivar

PREFIX OPT (all capital)

/opt/samhain/bin /opt/samhain/man /etc/opt Ivar/opt/samhain
PREFIX /other

/other/sbin /other/share/man /other/etc /other/var

The file signature database will be writteridoalstatedir /lib/samhain/samhain_file, the pid file
to localstatedir /run/samhain.pid, and the log file lmcalstatedir /log/samhain_log. In
addition, yule writes an HTML status file tocalstatedir /log/yule/yule.html

To get a more fine-grained control on the layout, the followdngfigure options are provided

- --with-config-file=FILE— The path of the configuration file.

« --with-log-file=FILE — The path of the log file.

+ --with-pid-file=FILE — The path of the pid file.

- --with-data-file=FILE— The path of the file sighature database file.

« --with-html-file=FILE — The path of the HTML status file (server only).

2.10.3. Runtime files

2.10.3.1. Standalone or client

Purpose Directory

Logfiles localstatedir llog/

Data files localstatedir /lib/samhain/
Pid file localstatedir /run/

2.10.3.2. Server

Note: The server will drop root privileges after startup. | does not need write access to the data
files, thus the data file directory is chmod 555 on installation. It does need write access to the log
file directory. As the system logfile directory usually is owned by root, the install script will by
default create a subdirectory and chown it to the unprivileged yule user. The PID file is written
before dropping root.

11

Chapter 2. Compiling and installing

Purpose Directory

Logfiles localstatedir llog/yule/
Data files localstatedir llib/yule/
Pid file localstatedir frun/
2.10.4. Installed files

2.10.4.1. Standalone or client

File Installed to Mode
samhain shindir /samhain 700
samhainrc sysconfdir /samhainrc 600
samhain.8 mandir /man8/samhain.8 644
samhainrc.5 mandir /man5/samhainrc.5 |644
(samhain_setpwd) shindir /samhain_setpwd 700
(samhain_stealth) shindir /samhain_stealth 700
2.10.4.2. Server

File Installed to Mode
yule shindir /yule 700
yulectl shindir /yulectl 700
yulerc sysconfdir /yulerc 600
samhain.8 mandir /man8/yule.8 644
samhainrc.5 mandir /man5/yulerc.5 644
samhain_setpwd shindir /yule_setpwd 700

2.11. The testsuite

Samhain comes with a suite of verification/regression tests located iesthe subdirectory of the

source tree.

The driver script igest/test.sh

test.sh [options]

. Calling it without arguments will provide some usage
information. The script should be called as:

<test_number >

12

Chapter 2. Compiling and installing

The driver script igest/test.sh . Calling it without arguments will provide some usage
information. The script should be called as:

bash$ test/test.sh [options] <test_number >

The possible tests are:

-- Compile with many different options

-- Hash function

-- Standalone init/check

Microstealth init/check

-- External program call

-- Controlling the daemon (signal handling)

-- GnuPG signed files / prelude log

-- Suidcheck

Test client/server init/check

Test full client/server init/check

Test full client/server w/gpg

Test full client/server w/mysq| (only with --really-all)
14 -- Test full client/server w/postgres (only with --really-all)
all -- All tests (non-applicable tests will be skipped)

Oo~NO Ok WN P
'
i

e
W N RO
oo
oo

The recognized options are as follows:

1.-g|--quietNo output; success/failure is reported vi exit status only.
.-v|--verboseReport additional information.
. -S|--stoponeriStop when a test fails.

.--no-cleanupDon’t clean up generated test data (useful to investigate the reason for a failure).

a b~ w0 DN

.--srcdir=... Tell the script the location of the source tree (not necessary if run from the top
source directory).

6. --color=always|never|aut&Vhether to use colour for output. Default is 'auto’ (no colour if
stdout is not a terminal).

7.--really-all This option enable additional test that are not run usually (see below).
The --really-all option: This option enables the following additional tests:

1. smatch As part of the compile test suite (test 1), the smatch checker will be used (see
smatch.sourceforge.net). Requires a appropriate setup (patched gcc in
/usr/local/gcc-smatch/bin/ , Smatch scripts in ../sm_scripts

2. prelude logging Logging to prelude will be tested as part of test 7. Requires
prelude-manager, and requires that samhain is already registered as analyzer. This test is
designed such that it should not interfere with an eventually running instance of
prelude-manager.

3. mysql/postgresql logging Logging to mysql and/or postgresqlwill be tested with tests 13/14.
Requires a running database with an existing default setup (database/user/password =
samhain/samhain/samhain, table = log).

13

Chapter 2. Compiling and installing

The database tests (13/14) with --really-all will modify (i.e. log to) the
database. These are the only tests that are not confined to the directory where

the test is run.

CAVEAT

14

Chapter 3. General usage notes

3.1. How to invoke

From the command line

« sambhain -t init [more options] — To initialize the database

- samhain -t check [more options}— To check against the database

By default, samhain wilhot become a daemon, but stay in the foreground. Daemon mode must be
set in the configuration file or on the command line. Also by default, samhaimeitterinitialize

its file system databas®r check the file system against it. The desired mode must be set in the
configuration file or on the command line. A complete list of command line options is given in the
appendix.

To start as daemon during the boot sequence

For Linux (Debian, Redhat, Gentoo, and SUSE), *BSD, Solaris, HP-UX, AIX, IRBke
install-boot will setup your system for starting the daemon upon system boot (if the correct
OS/distribution cannot be determined, nothing will be done).

For any other system, you need to figure out by yourself how to start samhain during the boot
sequence.

3.2. Using daemontool (or similar utilities)

samhain does not auto-background itself (to become a daemon) unless explicitely specified in the
config file or on the command line. However, normally it runs in single-shot mode if not used as
daemon. To cause samhain to enter the main loop while running in the foreground (as required if you
want to use daemontool), you need to start with the opfiar --forever. Note that yule, the server,

will always loop.

3.3. Controlling the daemon

As part of their boot concept, some systems have individual start/stop scripts for each service
(daemon). As a minimum, these scripts take either 'start’ or 'stop’ as argument, sometimes also e.g.
reload’ (to reload the configuration), restart’, or 'status’ (check whether the daemon is running).
While this is convenient, there are also a number of problems:

15

Chapter 3. General usage notes

« Some systems do not have such start/stop scripts.
« There is no standard for the location of these scripts.

- There is no standard for the arguments such a script may take, neither for their interpretation (e.g.:
on Linux distribution XYZ, do the start/stop scripts take 'status’ as argument, and if, is the status
reported by printing a message or by the exit status ?)

To provide a portable interface for controlling the samhain daemon, the executable itself can serve
for this purposednly if invoked by the superugerhe supported actions, which must be given as
first argumenbn the command line, are:

- start Start samhain. Arguments after 'start’ are passed to the process. Daemon mode will be
enforced, as well as running in 'check’ mode, irrespective of command line or config file settings.

- stopStop the daemon. On Linux and Solaris, actually all running instances of samhain are
stopped, even if no pid file is available.

- restartStop and start.
- reload or force-reloacReload the configuration file.

. statusCheck whether the daemon is running.

Success/failure is reported via the exit status as foll@&uccess. (On Linux/Solaristopwill
always be successful, on other systems only if the pid file is foundr)specified erro4 User had
insufficient privilege5 Program is not installed. Program is not running.

If the statuscommand is givend Program is runningl Program is dead and /var/run pid file exists.
3 Program is stopped. Program status is unknown.

l.e., this interface behaves as mandated by the LSB Standard for init scripts.

3.4. Signals

On startup, all signals will be reset to their default. Then a signal handler will be installed for all
signals that (i) can be trapped by a process and (ii) whose default action would be to stop, abort, or
terminate the process, to allow for graceful termination.

For SIGSEGYV, SIGILL, SIGBUS, and SIGFPE, a 'fast’ termination will occur, with only minimal
cleanup that may result in a stale pid file being left.

16

Chapter 3. General usage notes

If the operating system supports thiginfo_tparameter for the signal handling routine (se&n
sigaction), the origin of the signal will be checked.

The following signals can be sent to the process to control it:

« SIGUSRISwitch on/off maximally verbose output to the console.

« SIGUSRZSuspend/continue the process, and (on suspend) send a message to the server. This
message has the same priority as timestamps. This signal allowsgamirain -t init -e noneon
the client to regenerate the database, with download of the configuration file from the server, while
the daemon is suspended (normally you would get errors because of concurrent access to the
server by two processes from tkame hodt

« SIGTERMTerminate the process.

« SIGQUIT Terminate the server process after processing all currently pending requests from
clients. Terminate the client process after finishing the current task (from the ter@IiGQUIT
usually isCtrl -\).

« SIGHUPRe-read the configuration file. Note that it is not possible to override command-line
options given at startup.

- SIGABRTUnNIlock the log file, wait three seconds, then proceed. At the next access, the log file
will be locked again and a fresh audit trail -- with a fresh signature key -- will be started. This
allows log rotation without splitting an audit trail. See Sefeetion 4.5.1

« SIGTTOUPerform a file check. Only client/standalone, and only in daemon mode.

3.5. PID file

samhain generates a PID file if it is run as a daemon process. You can configure the path to the PID
file at compile time, either explicitely using theonfigure --with-pid-file=FILE option, or via the
Jconfigure --prefix=PREFIX option.

3.6. Log file rotation

samhain locks the logfile using a lock file. This lock file has the same path as the log fileloalith
appended. After sending SIGABRT to the samhain daemon, it will first finish its current tast (this
may take some time), then unlock the log file (i.e. removedbiie.lock file), wait three

seconds, then proceed. Thus, to rotate the log file, you should use something like the following script:

#! /bin/sh

if test -f /usr/local/var/run/samhain.pid; then \
PIN=‘cat /usr/local/var/run/samhain.pid‘; \

17

Chapter 3. General usage notes

/oin/kill -ABRT $PIN; \
sleep 1; \
AA=0; \
while test "x$AA" != "x120"; do \
let "AA = $AA + 1%\
if test -f /usr/local/var/log/samhain_log.lock; then \
sleep 1; \
else \
break; \
fi \
done; \
fi
mv /usr/locall/var/log/samhain_log /usr/local/var/log/oldliog

If you use the ’logrotate’ tool, you could use the following (untested):

/usr/locallvar/log/samhain_log {
size 100k
nocreate
compress
mail root@localhost
maillast

prerotate
if test -f /usr/local/var/run/samhain.pid; then \
PIN=‘cat /usr/local/var/run/samhain.pid‘; \
/bin/kill -ABRT $PIN; \
sleep 1; \
AA=0; \
while test "x$AA" != "x120"; do \
let "AA = $AA + 1"\
if test -f /usr/local/var/log/samhain_log.lock; then \
sleep 1; \
else \
break; \
fi \
done; \
fi
endscript

3.7. Updating the file signature database

The samhain daemon only reads the file signature database on startup (&sots@me5.4.4n

this). You can update the database while the daemon is running, as long as you don't interfere with
its logging (i.e. you should rusamhain -t update -l noneto make sure the log file is not accessed).
Interactive updates are supported with the command line fiaigractive

18

Chapter 3. General usage notes

If you are using samhain in client/server maaed keep the baseline database on the server, then
there are two ways to update the database:

- The preferred method is to use the web-based (PHP4) beltane (http://www.la-samhna.de/beltane/)
frontend, which allows to review client messages and to pergamer-sidaupdates of baseline
databases.

« Temporarilyscpthe baseline database to the client, samhain -t update andscpthe baseline
database back to the server. If you want to keep the client daemon running during the update, you
need to avoid concurrent access to the log file (use ’-I none’ for the update process). Also, you
need to avoid concurrent access to the server (use ’-e none’ for the update process).

If you mustaccess the server concurrently (e.g. to download the configuration file for the update
process), you need to suspend the client daemon process temporarily using SIGUSR2 (note that
SIGSTOP/SIGCONT will not do what you want, because the daemon must inform the server that
it is about to suspend). Use SIGUSR2 again to wake up the daemon from suspend mode.

3.8. Improving the signal-to-noise ratio

To get a good signal-to-noise ratio (i.e. few false alerts), you need to know which files should be
checked, and which not (looking at the ’last modified’ timestamp may be helpful, if in doubt).

To see how to set recursion depths, implement 'check all but xxx’ policies etc., have a look at
Section 5.4.1

As samhain runs a a daemon, it is capable to remember’ all file system changes, thus you won't get
bothered twice about the same problem.

3.9. Runtime options: command-line & configuration
file

All command line options are describedAppendix B>. Note that depending on thieonfigure
options used for compiling, not all options may be available. You can get a list of valid options with
samhain --help

All settings in the configuration file, are describeddppendix C-. Note that depending on the
.Jconfigure options used for compiling, not all options may be available. If you are using
unsupported options, samhain will log warning messages upon startup, including the line number of
the offending line in the configuration file.

19

Chapter 3. General usage notes

3.10. Support / Bugs / Problems

If you have problems getting samhain to run, or think that you have encountered a bug, then please
check the FAQ first.

If your problem is not anwered there, you can visit the user forum (http://la-samhna.de/forum)
(which issearchableby the way) and ask there for help (recommended for questions of probably
general interest), or send email teupport@la-samhna.de >.

Please remember that a useful problem report should at least include the following three items:

« What did you do ?
- What result did you expect ?

- What result did you obtain instead ?

Please be sure to provide relevant details, such as:

« your operating system, its release version, and the machivger(e -srm).
« your operating system, its release version, and the machirgar(e -srm).

- the version of samhain that you are using, and the options that you have supgiceditre.

If you think you have encountered a bug, it is usuaklyy helpfulif you run samhainn the
foreground(i.e. not as daemon) with the command line swifpllebugto get some more
information about the problem.

It would beeven more helpfuf you first re-compile samhain witbonfigure --enable-debugand
then run it with the command line switep debug(again, not as daemon, buatthe foregroundl

Please compress the output usgzip, and send it as attachment teugport@la-samhna.de >,

20

Chapter 4. Configuration of logging facilities

The configuration file for samhain is nam&tinhainrc by default. Also by default, it is placed in

letc . (Name and location is configurable at compile time). The distribution package comes with a
commented sample configuration file. The layout of the configuration file is described in more
details inSection C.1

4.1. General

Eventg(e.g. unauthorized modifications of files monitored by samhain) will generassagesf
someseverity These messages will be logged to all logging facilities, whbsssholdis equal to, or
lower than, the severity of the message.

4.1.1. Severity levels

The following severity levels are defined:

Level Significance

none Not logged.

debug Debugging-level messages.

info Informational message.

notice Normal conditions.

warn Warning conditions.

mark Timestamps.

err Error conditions.

crit Critical conditions.

alert Program startup/normal exit, or fatal error,
causing abnormal program termination.

inet Incoming messages from clients (server only).

Most events (e.g. timestamps, internal errors, program startup/exitfikadseverities. The
following events haveonfigurableseverities:

+ (server only) failure to resolve a client address (sediiisc], optionSeverityl ookup
« policy violations (for monitored files)

. access errors for files

21

Chapter 4. Configuration of logging facilities

+ access errors for directories
« obscure file names (with non-printable characters) and/or invalid UIDs/GIDs (ho such user/group)

- login/logout events (if samhain is configured to monitor them)

Severity levels for events (s&ection 4.1.%) are set in thé&ventSeveritand (for login/logout
events) théJtmpsections of the configuration file.

In the configuration file, these can be set as follows:

[EventSeverity]

#

these are policies

#

SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=warn
SeveritylgnoreNone=crit
SeveritylgnoreAll=info

#

these are access errors

#

SeverityFiles=err
SeverityDirs=err

#

these are obscure file names
and/or invalid UIDs/GIDs (no such user/group)
#

SeverityNames=info

#

This is the section for login/logout monitoring
#

[Utmp]

SeverityLogin=notice
SeverityLogout=notice

multiple logins by same user
SeverityLoginMulti=err

4.1.2. Classes

Eventsof related type are grouped inttassesFor each logging facility, it is possible to restrict
logging to a subset of these classes (Seetion 4.%). The available classes are:

Class ‘ Significance

22

Chapter 4. Configuration of logging facilities

Class Significance

EVENT Events to be reported (i.e. policy violations,
login/logout).

START Startup/stop messages.

STAMP Timestamp (heartbeat) messages.

LOGKEY The key to verify the signed log file.

ERROR Error messages.

OTHER Everything else (e.g. informational messages).

AUD System calls (for debugging).

The aforementioned classes represent a new, simplified classification scheme since version 1.8.2.
The previous scheme (listed below) will still work, and both can be mixed.

Class Significance

AUD System calls.

RUN Normal run messages (e.g. startup, exit, ...)
STAMP Timestamps and alike.

FIL Messages related to file integrity checking.
TCP Messages from the client/server subsystem.
PANIC Fatal errors, leading to program termination.
ERR Error messages (general).

ENET Error messages (network).

EINPUT Error messages (input, e.g. configuration file)

4.2. Available logging facilities

samhain supports the following facilities for logging:

« e-mail— sambhain uses built-in SMTP code, rather than an external mailer program. E-mails are
signed to prevent forging.

« syslog— The system logging utility.

« console— If running as daemorigevi/console is used, otherwise stdefdev/console can
be replaced by other devices, including a FIFO.

« log file— Entries are signed to provide tamper-resistance.

23

Chapter 4. Configuration of logging facilities

- log server— samhain uses TCP/IP with strong authentication and signed and encrypted messages.

- external— samhain can be configured to invoke external programs for logging and/or taking
some action upon certain conditions.

« SQL db— Currently samhain supports MySQL, PostgreSQL, Oracle, and unixODBC.

« Prelude— samhain can be compiled with support for the Prelude IDS, i.e. it can be used as a
Prelude sensor.

Each of these logging facilities has to be activated by setting an appropriate threshold on the
messages to be logged by this facility.

Note: In addition, some of these facilities require proper settings in the configuration file (see
next sections).

4.3. Activating logging facilities and filtering messages

All messages haveseveritylevel (seeSection 4.1.%) and aclass(seeSection 4.1.2), with
somewhat orthogonal meaning:

Theseverityranks messages with respect to their importance. Most events (e.g. timestamps, internal
errors, program startup/exit) hafieedseverities. However, as importance sometimes is a matter of
taste, some events havenfigurableseverities (se8ection 4.%).

Classegefer to the purpose/category of a message. As such, they should (ideally) be useful to
exclude messages that are not interesting in some context (e.g. startup/stop messages may seem
useless noise if samhain is run from cron).

Obviously, asseverityis a rank, the most natural way to exclude unwanted messages is to set a
threshold On the other hand, as the messalgssis a category, the most natural way to exclude
messages is tist those message classes that you want.

Messages are only logged to a log facility if their severity is at least as high as the threshold of that
facility, and their class is one of those wanted (by default: all). Thresholds and class lists can be
specified individually for each facility.

Switching on/off: Most log facilities are off by default, and need to be enabled by setting an

appropriate threshold.

A threshold of none switches off the respective facility.

24

Chapter 4. Configuration of logging facilities

Logging of client messages by the server: By default, messages received by the server are
treated specially, and are always logged to the logfile, and never to mail or syslog. If you don’t
like that, use the option UseClientSeverity=yes (section [Misc]).

Thresholds and class lists are set in tlog section of the configuration file. For each threshold
optionFacility ~ Severity there is also a corresponding optieacility Classto limit that facility
to messages within a given set of class. The argument must be a list of valid message classes,
separated by space or comma.

Actually, theFacility =~ Severity can take a list of severities with optional specifiers '*', 'I", or '=’,
which are interpreted as ’all’, ’excluding’, and 'only’, respectively. Examples: specifying " is equal
to specify 'debug’; specifying 'I*" is equal to specifying 'none’; 'info,!crit’ is the range from ’info’

to 'err’ (excluding crit and above); and 'info,!=err’ is info and above, but excluding (only) 'err’. This
is the same scheme as used by the Linux syslogd (see man 5 syslogd).

System callscertain system calls (execve, utime, unlink, dup (+ dup2), chdir, open, kill, exit (+
_exit), fork, setuid, setgid, pipe) can be logged (only to console and syslog). You can determine the
set of system calls to log via the optibogCalls=call1, call2, By default, this is off

(nothing is logged). The priority isotice and the class is AUD.

Example:

[Log]

#

Threshold for E-mails (none = switched off)
#

MailSeverity=none

#

Threshold for log file

#

LogSeverity=err

LogClass=RUN FIL STAMP

#

Threshold for console

#

PrintSeverity=info

#

Threshold for syslog (none = switched off)
#

SyslogSeverity=none

#

Threshold for logging to Prelude (none = switched off)
#

PreludeSeverity=none

#

Threshold for forwarding to the log server
#

25

Chapter 4. Configuration of logging facilities

ExportSeverity=crit

#

Threshold for invoking an external program
#

ExternalSeverity=crit

#

Threshold for logging to a SQL database
#

DatabaseSeverity=err

#

System calls to log

#

LogCalls=open, Kkill

4.4. E-mall

Items that can/must be configured are:

Recipients address

SetMailAddress=username@hostname

Up to eight addresses are possible, each one at most 63 characteesaldngn a seperate line
in the configuration file

Tip: it is recommended to use numerical IP addresses instead of host names (to avoid DNS
lookups).

Relay host / Mail exchanger

SetMailRelay=mail.some_domain.com

You may need this option because some sites don’t allow outbound e-mail connections from
any arbitrary host. If the recipient is offsite, and your site uses a mail relay host to route
outbound e-mails, you need to specify the relay host.

Maximum interval

SetMailTime=86400

You may want to set a maximum interval between any two consecutive e-mails, to be sure that
samhain is still 'alive’.

26

Chapter 4. Configuration of logging facilities

Maximum pending
SetMailNum=10

Messages can be queued to send several messages in one e-mail. You may want to set the the
maximum number of messages to queue. (Note: messages of highest priority (alert) are always
sent immediately. At most 128 messages can be queued.

Multiple recipients

MailSingle=yes/no

If there are multiple recipients, whether to send a single mail with the recipient list, or send
multiple mails. If all recipients are on same domain, a single mail may suffice, otherwise it
depends on whether the mail server supports forwarding (for security, most don't).

Subject line
MailSubject=string

Here,string may contain the placeholders %T, %H, %S, and/or %M that will get replaced by

the time, hostname, message severity and message text, respectively. The default subject line is
equivalent to "%T %H". This option may be useful if you want to send emails to an

email-to-sms gateway.

Sender

SetMailSendersstring

Here,stringis the address that is inserted in the From: field. If a name without domain is given
(i.e. without ’@xyz.tld"), the FQDN of the local host will be added automatically.

AND Filter
SetMailFilterAnd= list

If used, then ALL strings iist must occur in a message, otherwise it will not be sent by email.
As whitespace (blank or tab) is a valid separator in a list, strings with whitespace must be
enclosed in single or double quotes. If a string begins with a double quote, enclose it in single
guotes (and vice versa).

27

Chapter 4. Configuration of logging facilities

OR Filter
SetMailFilterOr= list

If used, then AT LEAST ONE of the strings list must occur in a message, otherwise it will

not be sent by email. As whitespace (blank or tab) is a valid separator in a list, strings with
whitespace must be enclosed in single or double quotes. If a string begins with a double quote,
enclose it in single quotes (and vice versa).

OR Filter
SetMailFilterNot=list

If used, then NONE of the strings list can occur in a message, otherwise it will not be sent by
email. As whitespace (blank or tab) is a valid separator in a list, strings with whitespace must be
enclosed in single or double quotes. If a string begins with a double quote, enclose it in single
guotes (and vice versa).

Example:

[Misc]

#

E-mail receipient (offsite in this case). Up to eight addresses,
each one at most 63 characters long.

#
SetMailAddress=username@host.some_domain.com
#

Need a relay host for outgoing mail.
#

SetMailRelay=relay.mydomain.com

#

Number of pending mails.

#

SetMailNum=10

#

Maximum time between e-mails.
Want a message every day, just to be sure that the
program still runs.

#

SetMailTime=86400

#

Do not send messages about added files, and startup messages
#

SetMailFilterNot = 'POLICY ADDED’, START

#

To all recipients in a single mail.

MailSingle=yes

28

Chapter 4. Configuration of logging facilities

4.4.1. E-mail reports and their integrity

The subject line contains timestamp and local hostname, which are repeated in the message body.
samhain uses its own built-in SMTP code rather than the system mailer, because in case of
temporary connection failures, the system mailer (e.g. sendmail) would queue the message on disk,
where it may become visible to unauthorized persons.

During temporary connection failures, messages are stored in memory. The maximum number of
stored messages is 128. samhain will re-try to mail every hour for at most 48 hours. In conformance
with RFC 821, samhain will keep the responsibility for the message delivery until the recipient’s
mail server has confirmed receipt of the e-mail (except that, as noted above, after 48 hours it will
assume a permanent connection failure, i.e. e-mailing will be switched off).

The body of the mail may consist of several messages that were pending on the internal queue (see
Section 4.2), followed by a signature that is computed from the message and a key. The key is
initialized with a random number, and for each e-mail iterated bgsh chain

The initial key is revealed in the first email sent (obviously, you have to believe that this first e-mail
is authentic). This initial key is not transmitted in cleartext, but encrypted with a one-time pad
(Section 11.2).

The signature is followed by a unique identification string. This is used to identify seperate audit
trails (here, drail is a sequence of e-mails from the same run of samhain), and to enumerate
individual e-mails within a trail.

The mail thus looks like:

first message
second message

signature
ID TRAIL_ID:hostname

Integrity verification: To verify the integrity of an e-mail audit trail, a convenience function is
provided:

samhain -M /mailbox/file/path

The mailbox file may contain multiple and/or overlapping audit trails from different runs of
samhain and/or different clients (hosts).

29

Chapter 4. Configuration of logging facilities

CAVEATS

Verification will fail, if the compiled-in key of the verifying executable is different
from the one that generated the message(s) (see Section 11.2>).

If you use a pre-compiled executable from some binary distribution, be sure to
read Section 11.2> carefully.

4.5. Log file

Trusted users

TrustedUser=username

If some element in the path to the log file is writeable by someone elsedbaar theeffective
userof the process, you have to include that user in the listusfted usergunless their UIDs
are already compiled in).

Separate log files for clients

UseSeparateLogsyes/no

Only relevant on the servddse a separate log file for (reports from) each client. The root name
of these log files will be the same as the main log file, with the client name appended.

4.5.1. The log file and its integrity

The log file is namedamhain_log by default, and placed intoar/log by default (hame and
location can be configured at compile time). If samhain has been compiled witledhéigure
--enable-xml-logoption, it will be written in XML format.

Note: If you have compiled for stealth (Chapter 9>), you won't see much, because if obfuscated,
then both a 'normal’ and an XML lodfile look, well ... obfuscated. Use samhain -jL
/path/to/logfile to view the logfile.

30

Chapter 4. Configuration of logging facilities

The log file is created if it does not exist, and locked by creatilaglafile which has the same path
as the logdfile, with a ".lock" appended. The lock file holds the PID of the process, which allows
samhain to recognize and remove a stale lock if there is no process with that PID.

On the log server, it is possible to use separate log files for individual clients. This can be enabled
with UseSeparateLogsyes/no in the Misc section of the server configuration file. No locking will
be performed for client files (only one instance of the server can listen on the TCP port, thus there
will be no concurrent access).

The directory where the lodfile and its lock file are located must be writeable only by trusted users
(seeSection 2.10.%). This requirement refers to tlrempletepath, i.e. all directories therein. By
default, onlyroot and theeffective useof the process are trusted.

Audit trails (sequences of messages from individual runs of samhain) in the log file start with a
[SOF] marker. Each message is followed by a signature, that is formed by hashing the message with
a key.

The first key is generated at random, and sent by e-mail, encrypted with a one-time pad as described
in the previous section on e-mail. Further keys are generated by a hash chain (i.e. the key is hashed
to generate the next key). Thus, only by knowing the initial key the integrity of the log file can be
assured.

The mail with the key looks like:

signature
ID TRAIL_ID:hostname

Integrity verification: To verify the log file’s integrity, a convenience function is provided:
samhain -L /logffile/path

When encountering the start of an audit trail, you will then be asked for the key (as sent to you by
e-mail). You can then: (i) hit return to skip signature verification, (ii) enter the key (without the
appended timestamp), or (iii) enter the path to a file that contains the key (e.g. the mail box).

If you use option (iii), the path must be an absolute path (starting with a /', not longer than 48
chars. For each audit trail, the file must contain a two-line block with the ----- BEGIN LOGKEY-----
line followed by the line (Key(48 chars)[timestamp]) from the mail. Additional lines before/after
any such two-line block are ignored (in particular, if you collect all e-mails from samhain in a
mailbox file, you can simply specify the path to that mailbox file).

31

Chapter 4. Configuration of logging facilities

CAVEATS

Verification will fail, if the compiled-in key of the verifying executable is different
from the one that generated the message(s) (see Section 11.2>).

If you use a pre-compiled executable from some binary distribution, be sure to
read Section 11.2> carefully.

4.6. Log server

Server address

SetLogServeramy.server.address

You have to specify the server address, unless it is already compiled in. It is possible to specify
a second server that will be used as backup.

Note: If you want to store the configuration file on the server, the server address must be
compiled in.

4.6.1. Detalls

During temporary connection failures, messages are stored in a FIFO queue in memory. The
maximum number of stored messages is 128. After a connection failure, samhain will make the next
attempt only after a deadtime that starts with 1 sec and doubles after each unsuccessful attempt (max
is 2048 sec). A re-connection attempt is actually only made for the next message after the deadtime
-- you should send timestamps (i.e. set the threshafdark) to ensure re-connection attempts for

failed connections.

It is possible to specify two log servers in the client configuration file. The first one will be used by
default (primary), and the second one as fallback in case of a connection failure with the primary log
server.

32

Chapter 4. Configuration of logging facilities

4.7. External facilities

samhain can invoke external scripts/programs for logging (i.e. to implement support for pagers etc.).
This is explained in detail iChapter 3.

4.8. Console

Up to two console devices are supported, both of which may also be nhamed pipes. If running as
daemon, samhain will ugdev/console for output, otherwise stdout. On Linux,
_PATH_CONSOLEHRvill be used instead dfieviconsole , if it is defined in the file
/usr/include/paths.h

You can override this at compile time, or in tiidisc] section of the configuration file with the
SetConsoledevice option. Up to two console devices are supported, both of which may also be
named pipes (use tigetConsoleoption twice to set both devices).

Switching off: Invariably, some users set SetConsole= /dev/null to switch off console logging.
This is highly ineffective, as the device will be opened, and the message written to it, for every
log message. The correct way is to use PrintSeverity= none in the [Log] section of the
configuration file (or the command line switch ’-p none’).

4.9. Prelude

REQUIREMENTS: This facility requires that you have compiled with the --with-prelude option to
include support for prelude. Of course you need the libprelude client library for this to work.

For Prelude 0.8, timestamp messages will automatically be converted to Prelude heartbeat messages.

For Prelude 0.9, timestamp messages are dropped, and the built-in heartbeat mechanism of the
libprelude library is used.

Note: The following configuration options can only be used with libprelude 0.9. The should be
placed the [Misc] section of the configuration file, if you use them. The 'PreludeMapTo... options
do not affect in any way whether a message is reported by samhain to the prelude manager (for
this there is 'PreludeSeverity’ in the [Log] section); they only affect the 'Impact severity’ shown on
the prelude side.

33

Chapter 4. Configuration of logging facilities

PreludeProfile

PreludeProfile=profile_name

Specify the profile to use. The default is 'samhain’.

PreludeMapTolnfo

PreludeMapTolnfo=list of samhain severities

The severities that should be mapped to impact severity ‘info’ for prelude. (default: none).

PreludeMapToLow

PreludeMapTolnfo=list of samhain severities

The severities that should be mapped to impact severity 'low’ for prelude. (default: debug, info).

PreludeMapToMedium

PreludeMapToMedium=list of samhain severities

The severities that should be mapped to impact severity 'medium’ for prelude. (default: notice,
warn, err).

PreludeMapToHigh

PreludeMapToHigh=list of samhain severities

The severities that should be mapped to impact severity 'high’ for prelude. (default: crit, alert).

4.9.1. Prelude-specific command-line options

With libprelude 0.9, the following prelude-specific command-line options are accepted:

1. --preludePrelude generic options are following. This option must be given before the following
options are used.

2. --profile <arg> Profile to use for this analyzer
3. --heartbeat-intervak.arg> Number of seconds between two heartbeats

4. --server-addr<arg> Address where this sensor should report to (addr:port)

34

Chapter 4. Configuration of logging facilities

5. --analyzer-namecarg> Name for this analyzer

4.9.2. Registering to a Prelude 0.9 manager

Sensor name/profile: For libprelude 0.9, the default sensor name/profile is 'samhain’. However,
version 2.0.6 of samhain still had 'Samhain’ (as for libprelude 0.8). For versions of samhain later
than 2.0.6, there is an option PreludeProfile= profile (in the [Misc] section) to set a
user-defined name/profile.

In order to register samhain as a Prelude sensor, you need to run on the sensor host and on the
manager host therelude-addusercommand.

sensor # prelude-adduser register samhain "idmef:w admin:r" <manager host >

- Using default TLS settings from /usr/local/etc/prelude/default/tls.conf:
- Generated key size: 1024 bits.
- Authority certificate lifetime: unlimited.
- Generated certificate lifetime: unlimited.

- Adding analyzer sambhain.
- Creating /usr/local/etc/prelude/profile/samhain...
- Using already allocated ident for samhain: 1312010545704259.
- Creating /ustr/local/var/spool/prelude/samhain...

- Registring analyzer samhain to localhost.

You now need to start "prelude-adduser" on the server host where
you need to register to:

use: "prelude-adduser registration-server <analyzer profile >"
example: "prelude-adduser registration-server prelude-manager"

This is used in order to register the ’'sending’ analyzer to the ’'receiving’
analyzer. <analyzer profile > should be set to the profile name of the

receiving’ analyzer, the one where ’'sending’ analyzer will register to.

Please remember that "prelude-adduser" should be used to register
every server used by this analyzer.

Enter the one-shot password provided by the "prelude-adduser" program:
- Enter registration one shot password:

manager # prelude-adduser registration-server prelude-manager

- Using default TLS settings from /usr/local/etc/prelude/default/tls.conf:
- Generated key size: 1024 bhits.

- Authority certificate lifetime: unlimited.
- Generated certificate lifetime: unlimited.

35

Chapter 4. Configuration of logging facilities

- Adding analyzer samhain.
- Creating /ustr/local/etc/prelude/profile/samhain...
- Using already allocated ident for samhain: 1312010545704259.
- Creating /usr/local/var/spool/prelude/samhain...

- Starting registration server.
- generated one-shot password is "fz64g2h2".

This password will be requested by "prelude-adduser" in order to connect.
Please remove the first and last quote from this password before using it.

- Waiting for peers install request...
You now have to type in thene-shot passworgenerated on "manager" at the password prompt on

"sensor”, (twice, for confirmation). Then on "manager" you will be asked to approve the registration.
Type'y’, and you are finished.

The configuration file for the samhain sensor is
/usr/local/etc/prelude/profile/samhain/config

4.9.3. Registering to a Prelude 0.8 manager

Sensor name/profile: For libprelude 0.8, the sensor name/profile is ’'Samhain’.

In order to register samhain as a Prelude sensor, you need to run on the Prelude manager the
commandmanager-adduser and on the client the commasénsor-adduser --sensorname
Samhain --uid 0 --manager-addr x.x.x.x

Both commands are interactive, and apparently should be run simultaneously, where
manager-adduserwill generate a 'one-shot password’ that must be entersémsor-adduser This
is how it looks on the Prelude manager:

bash$ manager-adduser

Generated one-shot password is "Oltdgbgy".

This password will be requested by "sensor-adduser" in order to connect.
Please remove the first and last quote from this password before using it.

- Waiting for install request from Prelude sensors...
- Connection from 127.0.0.1.
sensor choose to use PLAINTEXT communication method.

36

Chapter 4. Configuration of logging facilities
successfully created user calvin.

Sensor registered correctly.

And this is the dialog on the client:

bash$ sensor-adduser --sensorname Samhain --uid O --manager-addr 127.0.0.1

Now please start "manager-adduser” on the Manager host where
you wish to add the new user.

Please remember that you should call "sensor-adduser" for each configured
Manager entry.

Press enter when done.

Please use the one-shot password provided by the "manager-adduser" program.

Enter registration one shot password :
Please confirm one shot password :
connecting to Manager host (127.0.0.1:5553)... Succeeded.

Username to use to authenticate : calvin

Please enter a password for this user :

Please re-enter the password (comfirm) :

Register user "calvin" ? [y/n] : vy

Plaintext account creation succeed with Prelude Manager.
Allocated ident for Samhain@somehost: 61534998304562071.

The libprelude client library has a configuration file
letc/prelude-sensors/sensors-default.conf where you can configure e.g. the network
address of the Prelude manager.

4.10. Using samhain with nagios

After running./configure, you will find the scriptcheck_samhain.pl in the subdirectory
scripts/ of the samhain distribution. The following recipe to use this script has been kindly
provided by kiarna:

Nagios runs as user 'nagios’. However, in order to check the filesystem, you typically want to run
samhain as 'root’. You can use sudo to fix this problem. In yewrsudoers file, add the line:

nagios ALL = NOPASSWD:/path/to/check_samhain

37

Chapter 4. Configuration of logging facilities

Next, add the service to the nagios fileeckcommands.cfg

'check_samhain’ command definition

define command{

command_name check_samhain

command_line /usr/bin/sudo -u root $USER1$/check_samhain -t 100

}

Checking the filesystem may take some time, so you may want to increase the nagios plugin timeout
by changing the following line imagios.cfg ~ from 60 to 100:

service_check_timeout=100

Then add the service to the appropriate section in the nagioise.cfg file.

4.11. Syslog

samhain will translate its own severities irdgslog prioritiesas follows:

Severity Syslog priority
debug LOG_DEBUG
info LOG_INFO
notice LOG_NOTICE
warn LOG_WARNING
mark LOG_ERR

err LOG_ERR

crit LOG_CRIT

alert LOG_ALERT

Messages larger than 960 chars will be split into several messages. By default, samhain will use the
identity 'samhain’, thesyslog facilityLOG_AUTHPRIV, and will log its PID (process identification
number) in addition to the message.

The syslog facility can be modified via the directSgslogFacility=command>LOG_xxx in the Misc
section of the configuration file.

4.12. SQL Database

REQUIREMENTS: This facility requires that you have compiled with the --enable-xml-log option
to format log messages in XML (also for the client, even if you do SQL logging on the server),

38

Chapter 4. Configuration of logging facilities

and of course with the --with-database=XXX option (where 'XXX’ may be any of: mysd|,
postgresq|, oracle, or odbc).

If you are using the MessageHeader directive in the configuration file for a user-defined
message header, make sure that the log messages are still valid XML, and that all the default
entities are still present.

Currently MySQL, PostgreSQL, and Oracle are implemented and tested. Support for unixODBC is
implemented, but not fully tested. If the header file ‘'mysql.h’ (’libpg-fe.h’) is not found during
compilation ('mysql.h: No such file or directory’), you can use the option
--with-cflags=-1/dir/where/mysql.h/idf the library libmysgiclient.a (libpg.a) is not found

(usr/bin/ld: cannot find -Imysqglclient’), you can use the option
--with-libs=-L/dir/where/libmysq|client.a/is

Note: PostgreSQL may fail with --enable-static. This is a postgresql bug.

By default, the database server is assumed to be on localhost, the db name is 'samhain’, the db table
is 'log’, and inserting is possible for any user without passwordcréatethe database/table with the
required columns, the distribution includes the scripts 'samhain.mysgl.init’, 'samhain.postgres.init’,
and 'samhain.oracle.init’. E.g., for PostgreSQL you would setup the database like:

$ su postgres

$ createdb samhain

$ createuser -P samhain

$ psgl -d samhain < samhain.postgres.init
$ exit

... and for MySQL.:

$ mysql -p -u root < samhain.mysqgl.init

$ mysqgl -p -u root

> GRANT SELECT, INSERT ON ’samhain.log’” TO ’'samhain@localhost’;
> SET PASSWORD for 'samhain@Ilocalhost’ = PASSWORD("...");

> FLUSH PRIVILEGES;

Permissions: The PostgreSQL init script will grant INSERT permission only to a user 'samhain’.
Please take note that for PostgreSQL, inserting also requires SELECT and UPDATE permission
for the sequence ’'log_log_index_seq’ (see bottom of init script). The MySQL init script will create
the database, but not the user, and will not grant any permissions.

As with all logging facilities, logging to the SQL database must be enabled in the configuration file
by setting an appropriate threshold, e.g.:

39

Chapter 4. Configuration of logging facilities

[Log]
DatabaseSeverity=warn

In the Databasesection of the configuration file, you can modify the defaults via the following
directives:

[Database]
SetDBName=db_name
SetDBTable= db_table
SetDBHost= db_host
SetDBUser= db_user
SetDBPassword= db_password
UsePersistent= yes/no

The default is to use a persistent connection to the database. You can change this with
UsePersistent=no

Note re. PostgreSQL: For PostgreSQL, db_host must be a numerical IP address.

When logging client messages, yule will wrap them into a serdeg sev="RCVT" tstamp=.. >
... <llog> message. The parser will then create a separate database entry for this server timestamp.
If you don't like this, you can use the opti@etDBServerTstampalse

The table field 'log_ref’ is NULL for client messages, O for server messages, and equal to
'log_index’ of the client message for the aforementioned server timestamp of a client message.

Log records can be tagged via a special (indexed) table field 'log_hash’, which is the MD5 checksum
of (the concatenation of) any fields registered wittdToDBHash=field . The beltane web-based
console can use these tags to filter messages. There is no default set of fields over which the MD5
hash is computed, so by default the tagdgialfor all rows.

Tip: For security, you may want to set up a user/password for insertion into the db. However, as
the password is in cleartext in the config file (and the connection to the db server is not
encrypted), for remote logging this facility is less secure than samhain’s own client/server system
(it is recommended to run the db server on the log host and have the log server, i.e. yule, log to
the db).

40

Chapter 4. Configuration of logging facilities

4.12.1. MySQL configuration details

To pass the location of the MySQL Unix domain socket (for connections on localhost) to samhain,
you can use the environment variable MYSQL_UNIX_PORT (the value must be the path of the
socket).

Alternatively, as of samhain version 2.2, you can set options for the group "samhaip:citf . See

the MySQL manual for the proper syntax (http://dev.mysqgl.com/doc/refman/5.0/en/option-files.html)
of themy.cnf file, as well as for possible options
(http://dev.mysqgl.com/doc/refman/5.0/en/mysqgl-options.html).

Note: It is not possible for an application (like e.g. samhain) to detect whether my.cnf is readable
(because the application does not know where the file resides). Interesting errors may result...

41

Chapter 5. Configuration — samhain, the file
monitor

The samhain file monitor checks the integrity of files by comparing them against a database of file
signatures, and notify the user of inconsistencies. The level of logging is configurable, and several
logging facilities are provided.

samhain can be used as a client that forwards messages to the server part (yule) of the samhain
system, or as a standalone program (for single hosts).

samhain can be run as a background process (i.e. a daemon), or it can be started at regular intervals
by cron.

Tip: It is recommended to run samhain as daemon, because

« samhain can remember file changes, thus while running as a a daemon, it will not bother you
with repetitive messages about the same problem, and

« using cron opens up a security hole, because between consecutive invocations the executable
could get modified or replaced by a rogue program.

5.1. Usage overview

To use samhain, the following steps must be followed:

1. The configuration file must be prepareskegtion 5.4, Section 4.%, andSection 5.1% for
details).

- All files and directorieshat you want to monitor must be listed. Wildcard patterns are
supported.

« Thepoliciesfor monitoring them (i.e. which modifications are allowed and which not) must
be chosen.

- Optionally, theseverityof a policy violation can be selected.

- Thelogging facilitiesmust be chosen, and thiereshold levebf logging should be defined To
activate a logging facility, its threshold level must be different fnoome

- Eventually, theaddressof the e-mail recepient and/or thié addressof the log server must be
given.

42

Chapter 5. Configuration — samhain, the file monitor

2. The database must be initialized. If it already exists, it should be deleted (samhain will not
overwrite, but append), arpdateinstead ofinit should be used:

sambhain -tinitjupdate

3. Start samhain itheckmode. Either select this mode in the configuration file, or use the
command line option:

sambhain -tcheck
To run samhain as a background process, use the command line option

samhain -D -tcheck

5.2. Available checksum functions

A cryptographic hash function is a one-way functld(foo) such that it is easy to compuité{foo)
from foo , but infeasible to computieo from H(foo), or to findbar such thatH(bar) = H(foo)
(which would allow to replacéo with bar without changing the hash function).

One common usage of a such a hash function is the computat@recksumsf files, such that any
modification of a file can be noticed, as its checksum will change.

For computing checksums of files, and also for some other purposes, samhain uses the TIGER hash
function developed by Ross Anderson and Eli Biham. The output of this function is 192 bits long,
and the function can be implemented efficiently on 32-bit and 64-bit machines. Technical details can
be found at this page (http://www.cs.technion.ac.il/~biham/Reports/Tiger/).

As of version 1.2.10, also the MD5 and SHA-1 hash functions are available. (You need to set the
option DigestAlgo=MD5or DigestAlgo=SHAIn the config file to enable this). Note that MD5 is
somewhat faster, but because of security concerns it is not recommended anymore for new
applications.

43

Chapter 5. Configuration — samhain, the file monitor

5.3. File signatures

samhain works by generating a databastl®kignaturesand later comparing file against that
database to recognize file modifications and/or added/deleted files.

File signatures include:

+ a192-bit cryptographic checksum computed using the TIGER hash algorithm (alternatively
SHA-1 or MD5 can be used),

- the inode of the file,

- the type of the file,

- owner and group,

+ access permissions,

« on Linux only: flags of the ext2 file system (se&n chattr),
- the timestamps of the file,

« the file size,

+ the number of hard links,

- minor and major device number (devices only)

- and the name of the linked file (if the file is a symbolic link).

Depending on the policy chosen for a particular file, only a subset of these may be checked for
modifications (se&ection 5.4.%), but usually all these informations are collected.

5.4. Defining which files/directories to monitor

This section explains how to specify in the configuration file, which files or directories should be
monitored, and which monitoring policy should be used.

5.4.1. Monitoring policies

samhain offers several pre-defined monitoring policies. Each of these policies has its own section in
the configuration file. Placing a file in one of these sections will select the respective policy for that
file.

The available policies (section headings) are:

44

Chapter 5. Configuration — samhain, the file monitor

ReadOnly

All modifications except access times will be reported for these files.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode,
checksum, size, mtime, ctime.

LogFiles

Modifications of timestamps, file size, and signature will be ignored.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode.

GrowingLogFiles

Modifications of timestamps, and signature will be ignored. Modification of the file size will
only be ignored if the file size hascreased

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode=size
previous_size, checksum(file start up tp previous size) equals previous checksum.

Attributes

Only modifications of ownership, access permissions, and device number will be checked.

Checked: owner, group, permissions, file type, device number.

IgnoreAll
No modifications will be reported. However, tegistenceof the specified file or directory will
still be checked.

IgnoreNone

All modifications, including access time, but excluding ctime, will be reported - checking atime
and ctime would require to play with the system clock.

Checked: owner, group, permissions, file type, device number, hardlinks, links, inode,
checksum, size, mtime, atime.

User0

Initialized to: report all modifications.

45

Chapter 5. Configuration — samhain, the file monitor

Userl

Initialized to: report all modifications.

User2

Initialized to: report all modifications.

User3

Initialized to: report all modifications.

User4

Initialized to: report all modifications.

Prelink

Modifications of timestamps, size, and inode will be ignored Checksums will be verified by
calling /usr/sbin/prelink --verify . This policy is intended for verification of prelinked
executables/libraries and/or directories containing such files. For details and further
configuration options se®ection 5.4.8.

Checked: owner, group, permissions, file type, device number, hardlinks, links, checksum.

Note: Each policy can be modified in the config file section Misc with entries like
RedefReadOnly= +XXX][,...] or RedefReadOnly= -XXX][,...] to add (+XXX) or remove
(-XXX) a (a comma-separated list of) tests XXX, where XXX can be any of CHK (checksum),
LNK (link), HLN (hardlink), INO (inode), USR (user), GRP (group), MTM (mtime), ATM (atime),
CTM (ctime), SIZ (size), RDEV (device numbers), MOD (file mode), PRE (prelinked binary)
and/or SGROW (file size is allowed to grow).

This must come before any file policies are used in the config file.

5.4.2. File/directory specification
Entries for files have the following syntax:
file=/full/path/to/theffile

Entries for directories have the following syntax:

dir=[recursion depth]/full/path/to/the/dir

46

Chapter 5. Configuration — samhain, the file monitor

The specification of a (humerical) recursion depth is optional $&etion 5.4.5). (Do not put the
recursion depth in brackets -- they just indicate that this is an optional argument ...).

Wildcard patterns ("*', '?, ’[...]') as in shell globbing are supported for paths. The leading '/’ is
mandatory.

Note on directories: A directory is (a) a collection of files, with (b) a directory special file where

a listing of all files in the directories is kept. This directory special file will be modified in case of a
file addition, removal, or renaming. Depending on the chosen policy, samhain will report on such
modifications of the directory special file.

The addition and/or deletion of files from a directory modifies the directory special file
(mtime/ctime). The addition/deletion of subdirectories will also modify the number of hardlinks of
the directory special file. A modification of a file may modify a directory special file
(mtime/ctime), if this modification is done by first creating a temporary file, followed by renaming
this temporary file to the original one.

5.4.2.1. Rules
1. For the file check, samhain does not follow symlinks. If the argument for a file=... directive is a
symlink, then the symlink itself is checked, not the location it points to.

2. The argument for a dir=... directive must bdigectory. Using a symlink to a directory as
argument is incorrect.

3. Precedence is given to the most specific location in the filesystem regardless of the order listed
in the config file. l.e.,

- apolicy for a specific file overrides the policy for its directory
- apolicy for a subdirectory overrides the policy for its parent directory

- if a directory or file path are explicitly listed twice in two different policy sections, Samhain
will print a warning and honor only the first stanza processed. "First matching rule wins."
Note however that it is perfectly ok to list a directory both as file=/path and dir=/path (see
next rules).

4. Checking a directory with dir=... will check both tleentent of the directorgs well as the
directory special filétself, honoring a local and global recursion depth, giving local preference.

5. Using a directory as argument for both a file=... and a dir=... directive will have the effect that
- the file=... directive will override the dir=... directive for the directory special file itself,
- while the dir=... directive remains in effect for the directory content.

6. The presence of file=/parent/subdir , which is more specific of a path entry than that of the
parent directory in another policy section with a "deeper" recursion deptin-aN/parent will
not prevent Samhain from descending ifgarent/subdir and applying the higher level
directory with the "deeper" recursion policy to the contentpafent/subdir The

more-specific rule will only apply to the directory special file and does not "truncate” the higher
level policy in any way.

47

Chapter 5. Configuration — samhain, the file monitor

7. To determine if you config file syntax is working as expected, increase the verbosity of
debugging when running samhain with "-t init" using "-p info" or even "-p debug".

Example 1if you only want to check files in a directory, but not the directory inode itself, use:

[ReadOnly]
dir = /uOl/oracle/archive00
[IgnoreAll]
file = /uOl/oracle/archive00

Note: /uOl/oracle/archive00/archive0l.dbf -> archive99.dbf *should* be
mounted in the DB as a read-only tablespace and should never be
changed, however, the DBA thinks he's God and does not need to consult
with the Admin, so he may be adding new, deleting, or renaming the
DBFs using SQLPlus without consulting with the admin, so tell me about
changes to the files inside that we know about at Samhain INIT but

such as when he adds a file.

HoH HH H H R

Example 2i1f you want to monitor a directory, but not the dynamic contents inside it:

[Attributes]
file = /var/spool/mqueue
file = /tmp
[IgnoreAll]
dir=-1/var/spool/mqueue
dir=-1/tmp

Example 3if you want to monitor a directory special file, while ensuring no files within are
removed but not the actual attributes of those files:

[Attributes]
file = /root
[IgnoreAll]
dir=0/root

Thanks to Brian A. Seklecki for his effort to clarify these rules and provide examples.

5.4.3. Suppress messages about new/deleted files

If you want to suppress messages about the creation of certain files (e.g. rotated log files), you can
use the optionfgynoreAdded=/fullpath/with_some_regex_inside and/or
IgnoreMissing=/fullpath/with_some_regex_inside (to be placed in the [Misc] section of

the configuration files. If you want to add more regular expressions, you can use these options
multiple times.

48

Chapter 5. Configuration — samhain, the file monitor

Note: The argument to IgnoreAdded and IgnoreMissing must be a regular expression that
matches the full path.To test your regex before putting in samhain, you do something like this:

This regex matches all files added by logrotate (e.g: messages.l or messages.2.gz, etc.)
cd /var/log
for file in *; do echo $file| egrep "(cronlksyms|maillog|messages|rpmpkgs|secure|spooler|up2date|wmtp)\.[0-9](\.gz)?$"

Once it's work this way, you can add it to your samhainrc file, but don't forget to add the full path.
e.g:

IgnoreAdded = /var/log/(cron|ksyms|maillog|messages|rpmpkgs|secure|spooler|up2date|wmtp)\.[0-9](\.gz) ?$

This tip has been provided by jim at aegis hyphen corp dot org.

Alternative: If a directory is added to [Attributes] as a file=/dir, then only the directory special file
is monitored for permissions/ownership. The advantage is that additions/removals of files to that
subdirectory can happen without recourse, but the integrity of that directory is defended.
Assuming the administrator doesn’t want to get granular level of detail.

Good for such directories as: /var/mail /var/cron/tabs /var/tmp /tmp

This tip has been provided by Brian A. Seklecki

5.4.4. Dynamic database update
(modified/disappeared/new files)

samhain reads the file signature database at startup and creates an in-memory copy. This in-memory
copy is then dynamically updated to reflect changes in the file system.

I.e. for each modified/disappeared/new file you will receive an alarm, then the in-memory copy of
the file signature database is updated, and you will only receive another alarm for that file if it is
modified again (or disappears/appears again).

Note that the on-disk file signature databasedsupdated (if you have signed it, the daemon could
not do that anyway). However, as long as the machine is not rebooted, there should be no need to
update the on-disk file signature database.

If files disappear after initialization, you will get an error message with the severity specified for file
access errorekceptf the file is placed under thiggnoreAll policy, in which case a message of
SeveritylgnoreAl— seeSection 4.1.2 — is generated).

If new files appear in a monitored directory after initialization, you will get an error message with
the severity specified for that directory’s file poligxgeptf the file is placed under thiggnoreAll

49

Chapter 5. Configuration — samhain, the file monitor

policy, in which case a message®éveritylgnoreAl— seeSection 4.1.2 — is generated).

The special treatment of files under tigmoreAll policy allows to handle cases where a file might be
deleted and/or recreated by the system more or less frequently.

5.4.5. Recursion depth(s)

Directories can be monitored up to a maximum recursion depth of 99 (i.e. 99 levels of subdirectories.
The recursion depth actually used is defined in the following order of priority:

1. The recursion depth specified for that individual direct@gdtion 5.4). As a special case, for
directories with the policygnoreAll, the recursion depth should be sebtdf you want to
monitor (the existence of) the files within that directory, buttoif you do not want samhain to
look into that directory.

2. The global default recursion depth specified in the configuration file. This is done in the
configuration file sectioMisc with the entrySetRecursionLevelrmumber

3. The default recursion depth, which is zero.

5.4.6. Hardlink check

As of version 1.8.4, samhain will by default compare the number of hardlinks of a directory to the
number of its subdirectories (including "." and ".."). Normally, these numbers should be equal. The
idea here is that a (kernel) rootkit may hide a directory, but fail to "fix" the parent directory hardlink
count (actually, | am not aware of any kernel rootkit that would care to fix the hardlink count of the
parent directory). This is an experimental feature; if there are any problems, it can be disabled with
the optionUseHardlinkCheck=no in the [Misc] section of the configuration file.

Errors will be reported at the same severity as directory access errors option
SeverityDirs=severity in section [EventSeverity]).

MacOS X: This feature is not supported on MacOS X (because the resource fork is implemented
as an invisible directory, it modifies the parent directory hardlink count.)

5.4.6.1. Specify exceptions for the hardlink check

Some filesystems do not always follow the rule mentioned above (directory hardlink equals number
of subdirectories). E.g. the root directory of reiserfs partitions generally seems to have two additional

50

Chapter 5. Configuration — samhain, the file monitor

hardlinks. To account for such exceptions, you can specify exceptions with the option
HardlinkOffset= N:/path in the [Misc] section of the configuration file. Here, N is the numerical
offset (actual - expected hardlinks) ffpath . For multiple exceptions, use this options multiple
times (note that '/path N:/path2’ would itself be a valid path, so using the option only once with
multiple exceptions on the same line would be ambiguous).

Note: Please note that samhain will not check for an exception if the standard rule (offset = 0) is
true for a directory. Thus it will not warn if a directory that once was exceptional is not anymore.

5.4.7. Check for weird filenames

Sambhain checks for weird filenames (containing control/nonprintable characters, newlines or tabs)
and warns about them at a severity level that is set &éberityNamesseverity in section
[EventSeverity]. The rationale is: most of the time, such names are either the result of user errors,
buggy scripts, or questionable activity. If you want to add characters to the set of 'good’ ones, you
can do so with the optioltAddOKChars=N1, N2, ... inthe [Misc] section of the configuration

file. Nn should be the unsigned byte value of the character(s) in hex (leading '0x’: 0XNN), octal
(leading zero: ONNN), or decimal.

Tip: This check will not be performed for files under the IgnoreAll policy. To completely disable
this check, use AddOKChars=all .

5.4.8. Support for prelink

prelink is a tool available on modern Linux systems that can significantly reduce the startup time of
applications. It does this by performing some of the work of the dynamic linker in advance. As this
changes both executables and shared libraries, file integrity verification will fail unless prelink is
supported, in particular as prelinking has to be redone if libraries are updated (so initializing the
checksum database after prelinking may not be good enough).

The disadvantage is that prelinking modifies libraries and executables, and may need to be redone
(potentially modifying all or many executables again) if a library is updated. This is a major problem
for file integrity checkers.

Version 2.0 of samhain and later support prelink. To use this support, you need to place prelinked
executables and libraries (or directories holding them) unddiPttedink] policy rather than under

the (e.g.YReadOnly]policy. For all files under th§Prelink] policy, inode, size, and timestamps will
be ignored (prelinking changes them). In addition, for ELF binaries unddPtieénk] policy,

51

Chapter 5. Configuration — samhain, the file monitor

lusr/sbin/prelink --verify will be used to compute checksums (i.e. the checksum will be computed
on the output of this command). For other files, checksums are computed as usual.

Speed: Obviously, invoking prelink results in a significant overhead, and slows down file
integrity checking (tests indicate a factor of three - your mileage may vary).

Verification failures (zero checksum): It seems that prelink --verify fails if the dependencies
of a prelinked binary have changed. This results in a zero checksum, and can be fixed by
re-prelinking the affected binary.

There are two configuration options in tiMisc] section that can are relevant for prelink support:

SetPrelinkPath=fullpath ~ sets the path to the prelink executable. The default is
Jusr/sbin/prelink

SetPrelinkChecksum=hecksum sets the TIGER192 checksum for the prelink executable. You can
compute this wittsamhain -H /usr/sbin/prelink (remove whitespace from the computed
checksum). If the checksum is set, samhain will verify the prelink executable immediately before
using it, otherwise prelink will be used without this special precaution.

5.4.9. Codes in messages about reported files

As of version 1.8.2, reports about modified files include a short code in the message field to describe
which properties have been modified. The codes are: 'C’ for 'checksum’, 'L’ for (soft) 'link’, 'D’ for
'device number’, 'l for 'inode’, 'H’ for (number of) ’hardlinks’, ‘M’ for 'mode’, 'U’ for 'user’

(owner), 'G’ for 'group’ (owner), 'T" for 'time’ (any), and finally 'S’ for 'size’.

As an example, 'C--I----TS’ would indicate that a file has been replaced by one with different
checksum, inode, timestamp, and size, but (e.g.) same mode (type and access permissions) and same
ownership.

5.5. Excluding files and/or subdirectories (All except

)

To exclude individual files from a directory, place them under the pdtjopreAll. Note that the
existencef such files will still be checked (see next section).

52

Chapter 5. Configuration — samhain, the file monitor

To exclude subdirectories from a directory, place them under the pggimreAll with an individual
recursion depth ofl (seeSection 5.4.5).

Note: Changes in a directory may also modify the directory inode itself (i.e. the special file that
holds the directory information). If you want to check all but a few files in a directory (say, /etc),
and you expect some of the excluded files to get modified, you should use a setup like:

[ReadOnly]

#

dir=/etc

#

[Attributes]

#

less restrictive policy for the directory file itself
#

file=/etc

#

[lgnoreAll]

#

exclude these file and directories
#

file=/etc/resolv.conf.save
dir=-1/etc/calendar
#

5.6. Timing file checks

In the Misc section of the configuration file, you can set the interval (in seconds) between succesive
file checks:

SetFilecheckTimevalue
Alternatively, you can specify a crontab-like schedule with:
FileCheckScheduleOneschedule

The schedule follows the same rules as crontab(5) entries, with two noteable exceptitisis.de
not allowed, and (bjangesof names (like Mon-Fri) are allowed. Sean 5 crontab for details. You
can specify a list of schedules, with separate FileCheckScheduleOne=... directives on separate lines.

Note: If you need a list in your schedule, you can either use steps (like */2 for 'every two
minutes/hours/...), or you can specify a list of schedules, with separate
FileCheckScheduleOne=. .. directives on separate lines.

53

Chapter 5. Configuration — samhain, the file monitor

5.6.1. Using a second schedule

If you want to check some files rather often, while doing a more extensive check only sometimes,
this is supported as follows:

« Enclose all directories for the more extensive check in a %SCHEDULE_TWO ...
1%SCHEDULE_TWO block like:

%SCHEDULE_TWO
dir=/check/only/once/per/day
1%SCHEDULE_TWO

- Define an optional second schedule as follows (similar to FileCheckSchedule, you can specify a
list of schedules):

FileCheckScheduleTwoschedule2

Rules:

1. All files and directories will always be checked at FileCheckScheduleTwo.

2. All single files (file=...) will always be checked at both FileCheckScheduleOne and
FileCheckScheduleTwo (rationale: this is required to check for missing/added files in
directories).

3. All directories outside the %SCHEDULE_TWO block will be checked at both
FileCheckScheduleOne and FileCheckScheduleTwo.

4. All directories inside the %SCHEDULE_TWO block will be checked at
FileCheckScheduleTwo only.

5.7. Initializing, updating, or checking

In the Misc section of the configuration file, you can choose between initializing the database,
updating it, or checking the files against the existing database:

54

Chapter 5. Configuration — samhain, the file monitor

ChecksumTestanit|update|check|none

If you use the modeoneg you should specify on the command line onénif, update or check
like: samhain -tcheck

As of version 1.8.1, there is a new command line flaigteractiveto enable interactive updates. If
you use this flag together with update you will be asked if the database entry should be updated,
whenever samhain encounters a modified file.

5.8. The file signature database

The database file is namedmhain_file by default, and placed into
{usr/locallvar/lib/samhain by default (name and location can be configured at compile
time).

The database is a binary file. For security reasons, it is recommended to store a backup copy of the
database on read-only media, otherwise you will not be able to recognize file modifications after its
deletion (by accident or by some malicious person).

samhain will compute the checksum of the database at startup and verify it at each access. samhain
will first open() the database, compute the checksum, rewind the file, and then read it. Thus it is not
possible to modify the file between checksumming and reading.

5.9. Checking the file system for SUID/SGID binaries

To compile with support for this option, use the configure option
Jconfigure --with-suidcheck

If enabled, this will cause the samhain daemon to check the whole file system hierarchy for
SUID/SGID files at user-defined intervals, and to report on any that are not included in the file
database. Upon database initialization, all SUID/SGID files will automatically be included in the
database. Excluded are nfs, proc, msdos, vfat, and iso9660 (CD-ROM) file systems, as well as file
systems mounted with the 'nosuid’ options (the latter is not supported on all OSes, but at least on
Linux).

On Linux, files that are marked as candidates for mandatory locking (group-id bit set, group-execute
bit cleared) will be ignored.

55

Chapter 5. Configuration — samhain, the file monitor

You can manually exclude one directory (see below); this should be used only for obscure problems
(e.g.: /Inet/localhost on Solaris - the automounter will mirror the root directory twice, as
'Inet/localhost’ and '/net/localhost/net/localhost’, and any nfs file system in '/’ will be labelled as ufs
system in '/net/localhost/net/localhost’ .. .).

Note: The SUID check is very 1/0O expensive. Using 'nice’ may not help, if the CPU is waiting for
I/O all the time anyway. To limit the load, the following options are provided:

You can schedule execution at fixed times with SuidCheckSchedule= schedule .
You can limit I/O with the SuidCheckFps= fps option (fps: files per second).

As an alternative to the SuidCheckFps option, you can use SuidCheckYield= yes . This will
cause the SuidCheck module to yield its time slice after each file. If SuidCheckYield is used, the
SuidCheckFps option will not take effect.

The schedule should have the same syntax as a crontab entry (see crontab(5) and example
below), with the following exceptions: (a) lists are not allowed, and (b) ranges of names are
allowed. If a schedule is given, the SuidChecklinterval option will not take effect. You can
specify a list of schedules with successive SuidCheckSchedule=... directives.

5.9.1. Quarantine SUID/SGID files

As of version 1.8.4, it is possible guarantinenew SUID/SGID files detected by samhain. To use
this option, you must first enable it witbuidCheckQuarantineFilesses . This tells the SuidCheck
module to quarantine any SUID/SGID files found after the initialization of the database using the
method selected iBuidCheckQuarantineMethod (see next paragraph). If this is used, the file will
be logged each time it is found and not added to the memory resident database.

You must also choose a method to be used to quarantine a SUID/SGID file:
SuidCheckQuarantineMethod=0/1/2 . Currently, there are 3 methods implemented: O - Delete the
file from the system. 1 - Remove the SUID/SGID permissions from the file. 2 - Move the
SUID/SGID file to a quarantine directory. The quarantine directory is
DEFAULT_DATAROOT/.quarantine . Each file moved there has an additional file created that
contains information about the SUID/SGID file. For example, if a/fde is an unauthorized

SUID/SGID file, then it will be removed and moved/tar/lib/samhain/.quarantine and
another filefoo.info , will be created irfvar/lib/samhain/.quarantine with information
about/foo .

56

Chapter 5. Configuration — samhain, the file monitor

CAVEAT

Methods 0 and 2 will by default not remove the original file, but rather truncate
to zero size and remove suid/sgid properties. If you really want to remove the
original file rather than truncate, you need to set the option
SuidCheckQuarantineDelete= yes

Removing a file in an arbitrary directory is considered to be dangerous,
because the object that is unlinked may not be the same object anymore that
has been determined to be a suid/sgid file before. You have been warned.

5.9.2. Configuration

This facility is configured in th&uidCheclsection of the configuration file.

[SuidCheck]

#

activate (0 for switching off)

SuidCheckActive=1

#
#
#

interval between checks (in seconds, default 7200)
SuidChecklnterval=86400
scheduled check at 01:30 each night

SuidCheckSchedule=30 1 * * *

#

this is the severity (see Section 4.1.1 >)

SeveritySuidCheck=crit
you may manually exclude one directory
SuidCheckExclude=/net/localhost

#
#

limit on files per seconds

SuidCheckFps=250

HOHH K HHHHHHHHHHH

alternatively yield time slice after each file
SuidCheckYield=yes

Quarantine detected SUID/SGID files
SuidCheckQuarantineFiles=no

Quarantine Method
0 - Delete the file from the system.
1 - Remove the SUID/SGID permissions from the file.
2 - Move the SUID/SGID file to a quarantine directory.
The quarantine directory is DEFAULT_DATAROQOT/.quarantine.
SuidCheckQuarantineMethod = 1

Really delete if using methods 0 or 2
SuidCheckQuarantineDelete = no

57

Chapter 5. Configuration — samhain, the file monitor

5.10. Detecting Kernel rootkits

This option is currently supported only for Linux, kernel versions 2.2.x, 2.4.x, and 2.6.x on ix86
machines, and for FreeBSD (tested on FreeBSD 4.6.2, FreeBSD 5) and OpenBSD (tested with
OpenBSD 3.8), also on ix86 machines.

Warning

It is incorrect to assume that disabling support for loadable kernel modules
protects against runtime kernel modifications. It is possible to modify the
kernel via /dev/kmem as well.

To use this facility, you need to compile with the option:

.Jconfigure --with-kcheck=/path/to/System.map (Linux), or

.Jconfigure --with-kcheck (FreeBSD/OpenBSD).

On Linux, System.map is a file (sometimes with the kernel version appended to its name) that is
generated when the kernel is compiled, and is usually installed in the same directory as your kernel
(e.g./boot), orin the root directory. To find it, you can udecate System.map

Updating the kernel: On Linux, after installing a new kernel, you need to configure five (5)
addresses (see configuration example below), otherwise the kernel check will not work anymore
(samhain needs to know the new position of some objects within the kernel). As explained
below, you can easily obtain the required values by grepping them from the System.map of your
new kernel, which should normally be installed into the /boot directory, together with the kernel.

Cross-compiling for a different kernel: You need at least to perform the configuration as
described in Section 5.10.1>. Also, if you compile for a 2.4 kernel on a 2.6 system, you should
supply the System.map for the target kernel when running ./configure , and you should edit the
file config.n after running the ./configure script, but before executing make in the following
way: search for SH_KERNEL_VERSION, and set it to the kernel version (uname -r) of the target
kernel.

Using the hiding kernel module: If you also use the option ./configure --enable-khide to use
a kernel module to hide the presence of samhain, the first detected modification of the

58

Chapter 5. Configuration — samhain, the file monitor

sys_getdents syscall (to list directories) will only cause a warning (rather than an error), as it is
presumed to be caused by the samhain_hide LKM).

You should NOT initialize the database with the samhain_hide LKM loaded (doing so might
result in the non-detection of a real rootkit if it also only modifies the sys_getdents syscall).

5.10.1. Configuration

This facility is configured in th&ernelsection of the configuration file.

[Kernel]

activate (0 for switching off)

KernelCheckActive=1

interval between checks (in seconds, default 300)
KernelCheckinterval=20

also check the interrupt descriptor table (default TRUE)
KernelCheckIDT=TRUE

this is the severity (see section Section 4.1.1)
SeverityKernel=crit
#

Only needed for Linux, after installing a new kernel. You need the address
(first item in the grepped line), prefixed with '0x’ to indicate

hexadecimal format.

#

this is the address of system_call (grep system_call System.map)
KernelSystemCall = 0xc0106cf8

#

this is the address of sys_call_table (grep ' sys_call_table’ System.map)
KernelSyscallTable = 0xc01efb98

#

this is the address of proc_root (grep ' proc_root$’ System.map)
KernelProcRoot = 0xc01lefb98

#

this is the address of proc_root_inode_operations

(grep proc_root_inode_operations System.map)

KernelProcRootlops = 0xc01efb98

#

this is the address of proc_root_lookup

(grep proc_root_lookup System.map)

KernelProcRootLookup = 0xc0lefb98

59

Chapter 5. Configuration — samhain, the file monitor

5.10.2. What is a kernel rootkit ?

A rootkit is a set of programs installed to "keep a backdoor open" after an intruder has obtained root
access to a system. Usually such rootkits are very easy to install, and provide facilities to hide the
intrusion (e.g. erase all traces from audit logs, install a modified 'ps’ that will not list certain
programs, etc.).

While "normal" rootkits can be detected with checksums on programs, like samhain does (the
modified 'ps’ would have a different checksum than the original one), this method can be subverted
by rootkits that modify the kernel at runtime, either wittbadable kernel moduldKM), i.e. a

module that is loaded into the kernel at runtime, or by writinggtw/kmem (this allows to 'patch’ a
kernel on-the-fly even if the kernel has LKM support).

Kernel rootkits can modify the action of kerrglscalls From a users viewpoint, these syscalls are

the lowest level of system functions, and provide access to filesystems, network connections, and
other goodies. By modifying kernel syscalls, kernel rootkits can hide files, directories, processes, or
network connections without modifying any system binaries. Obviously, checksums are useless in
this situation.

5.10.3. Implemented integrity checks

When a system call (e.g. open() to open a file) is made by an application, the flow of control looks
like this:

1. Aninterrupt is triggered, and execution continues at the interrupt handler defined for that
interrupt. On Linux, interrupt 80 is used.

A rootkit could replace the kernels interrupt handler by an own function.
Sambhain checks the Interrupt Descriptor Table for modifications.

2. The interrupt handler (hamed system_call() on Linux) looks up the address of the requested
syscall in the syscall table, and executes a jump to the respective address.

A rootkit may (a) modify the interrupt handler to use a (rootkit-supplied) different syscall table,
or (b) modify the entries in the syscall table to point to the rootkits replacement functions.

Sambhain checks (a) the interrupt handler, and (b) the syscall table for modifications.

3. The syscall function is executed, and control returns to the application.

60

Chapter 5. Configuration — samhain, the file monitor

A rootkit may overwrite the syscall function to place a jump to its own replacement function at
the start of the syscall function.

Samhain checks the first few bytes of each syscall function for modifications.

In addition to these checks, Samhain will check/hrec inode to detect the adore-ng rootkit,
which does not modify any syscall execution, but rather the VFS (Virtual File System) layer of the
kernel.

On FreeBSD/OpenBSD, currently only the syscall table (2b) and the system call (3) are checked.

5.10.4. Error messages

Error messages start with 'POLICY KERNEL'. There are four types of them: (a) 'IDT’ signifies
modified interrupts: old and new address, segment, privilege level, and type are listed, (b)
SYSCALL: modified syscall table/syscall code interrupt handler, and (c) SYS_GATE: modified
interrupt handler for syscalls. (d) PROC: modifipcbc system

If an empty slot in the interrupt descriptor table (old address zero) has been modified, this indicates
that a new interrupt has been installed. This cannot modify the behaviour of user applications (which
would not use that interrupt), but could be used by a dedicated (rootkit-supplied) application to
perform some action (e.g. elevate privileges).

Likewise, if an empty slot in the syscall table (syscall name sys_ni_syscall/_nosys) has been
modified, this cannot modify the behaviour of user applications, but again could be used by a
dedicated (rootkit-supplied) application to perform some action.

Note: As of version 1.8.4, kernel info is stored in the baseline database by (mis-)using fields that
normally describe some properties of files. You may therefore find that error messages have info
appended that looks like properties you would normally expect for a file (e.g. mtime, ctime,
link_path ...). This is required for server-side database update (if you use samhain as
client/server system).

5.11. Monitoring login/logout events

To compile with support for this option, use the configure option

61

Chapter 5. Configuration — samhain, the file monitor

Jconfigure --enable-login-watch

samhain can be compiled to monitor login/logout events of system users. For initialization, the
systemutmp file is searched for users currently logged in. To recognize changes (i.e. logouts or
logins), the systemitmp file is then used. This facility is configured in thimp section of the
configuration file:

[Utmp]

#

activate (0 for switching off)

#

LoginCheckActive=1

#

interval between checks (in seconds)
#

LoginCheckinterval=600

#

these are the severities (see section Section 4.1.1)
#

SeverityLogin=info

SeverityLogout=info

#

multiple logins by same user

#

SeverityLoginMulti=crit

5.12. Checking mounted filesystem policies

To compile with support for this option, use the configure option
.Jconfigure --enable-mounts-check

samhain can be compiled to check if certain filesystems are mounted, and if they are mounted with
the appropriate options. This module currently supports Linux, Solaris, HP-UX (mount options as in
/etc/mnttab), and FreeBSD. The configuration of the module is done Molb@tssection of the
configuration file:

[Mounts]

#

Activate (0 is off).

#

MountCheckActive=1

#

Interval between checks.

62

Chapter 5. Configuration — samhain, the file monitor

#

MountCheckinterval=7200

#

Logging severities. We have two checks: to see if a mount is there, and to
see if it is mounted with the correct options.

#

SeverityMountMissing=warn

SeverityOptionMissing=warn

#

Mounts to check for, followed by lists of options to check on them.
#

checkmount=/

checkmount=/var

checkmount=/usr

checkmount=/tmp noexec,nosuid,nodev

checkmount=/home noexec,nosuid,nodev

This module by the eircom.net Computer Incident Response Team.

5.13. Checking sensitive files owned by users

To compile with support for this option, use the configure option
Jconfigure --enable-userfiles

samhain can be compiled to support checking of files that are specified as being relative to the a
user’s home directory. It is intended to detect interference with files that influence process behaviour
such asprofile It simply adds the appropriate file entries to the main samhain list, at the specified
alerting level.

[UserFiles]

#

Activate (0 is off).
#

UserfilesActive=1

Files to check for under each $HOME
A specific level can be specified.

The allowed values are:

allignore

attributes

logfiles

loggrow

noignore

HOH K K HH R KRR

63

Chapter 5. Configuration — samhain, the file monitor

readonly
user0
userl
user2
user3
user4

The default is noignore

HOHH K H K HHHR

UserfilesName=.login noignore

UserfilesName=.profile readonly
UserfilesName=.ssh/authorized_keys

#

A list of UIDs where we want to check.

The default is all.

IF THERE IS AN OPEN RANGE, IT MUST BE LAST
#

UserfilesCheckUids=0,100-500,1000-

This module by the eircom.net Computer Incident Response Team.

5.14. Modules

samhain has a programming interface that allows to add modules written in C. Basically, for each
module a structure of typstruct mod_typgas defined ish_modules.h , must be added to the list
in sh_modules.c

This structure contains pointers to initialization, timing, checking, and cleanup functions, as well as
information for parsing the configuration file.

For details, in the source code distribution check the fitesnodules.h, sh_modules.c , as well
as e.gutmp.c, utmp.h , which implement a module to monitor login/logout events. There is also a
HOWTO written by eircom.net Computer Incident Response Team.

5.15. Performance tuning

Almost all time is spent in the checksum algorithm. To improve performance, you can use MD5
instead of TIGER, which will give some 20 per cent improvement (on Linux/i686). To switch to
MD5, use theDigestAlgooption in the configuration file:

[Misc]

64

Chapter 5. Configuration — samhain, the file monitor

use MD5
DigestAlgo=MD5

Other things you can do are:

- Build a static binary (use theenable-staticswitch for configure). Static binaries are faster, and
also more secure, because they cannot be subverted via libc.

Note: Unfortunately this is not possible on Solaris. This is not a bug in samhain, but is
because some functions in Solaris are only supplied by dynamic libraries.

« Change the compiler switches to optimize more aggressively.

- If on a commercial UNIX, check whether the native compiler produces faster code (you need an
ANSI C compiler). The/configure script honours CC (compiler) and CFLAGS environment
variables.

On the other side, if you want to reduce the load caused by file checking, you can change the
scheduling priority (seean nice), and/or limit the I/O:

[Misc]

low priority (positive argument means lower priority)
SetNicelLevel=19

kilobytes per second

SetlOLimit=1000

Similarly, for the SUID check, you can limit the files per seconds:

[SuidCheck]
limit on files per seconds
SuidCheckFps=250

65

Chapter 6. yule, the log server

yule is the log server within the samhain file integrity monitoring system. yule is part of the
distribution package. It is only required if you intend to use the client/server capability of the
samhain system for centralized logging to yule.

Important

Client and server are distict applications, and must be built seperately. By
default, installation names and paths (e.g. the configuration file) are different.
Do not blame us if you abuse "./configure’ options to cause name clashes, if
you install both on the same host.

To compile yule, you must use ./configure --enable-network=server . To
compile a samhain client, you must use ./configure --enable-network=client

6.1. General

yule is a non-forking server. Instead of forking a new process for each incoming logging request, it
multiplexes connections internally. Apart from samhain client reports (see below), yule (version
1.2.8+) can also collect syslog reports by listening on port 514/udp, if compiled with this option
enabled (see alsman syslogd

Each potential client must registeredwith yule to make a connection (s&ection 5.% and the

example below). The client tells its host name to the server, and the server verifies it against the peer
of the connecting socket. On the first connection made by a client, an authentication protocol is
performed. This protocol providesutual authenticatioof client and server, as well as a fresh

session key

By default, all messages are encrypted using Rijndael (selected as the Advanced Encryption Standard
(AES) algorithm). The 192-bit key version of the algorithm is used. There is a compile-time option
to switch off encryption, if your local lawmakers don’t allow to use it (see Appendix).

yule keeps track of all clients and their session keys. As connections are dropped after successful
completion of message delivery, there is no limit on the total number of clients. There is, however, a
limit on the maximum number afimultaneougonnections. This limit depends on the operating
system, but may be of order 1000.

Session key expire after two hours. If its session key is expired, the client is forced to repeat the
authentication protocol to set up a fresh session key.

66

Chapter 6. yule, the log server

Incoming messages are signed by the client. On receipt, yule will:

1. check the signature,

2. accept the message if the signature can be verified, otherwise discard it and issue an error
message,

3. discard the clients signature,
4.log the message, and the client’s hostname, to the console and the log file, and

5. add its own signature to the log file entry.

6.2. Important installation notes

As of version 1.7.0, yule wilalwaysdrop root privileges after startup and initialization. You can use
a privileged port (port number below 1024), because setting up the listening socket will occur as
long as yule still has root privileges.

There are some special considerations that need to be taken into account when setting up an
installation of yule. In particular:

The unprivileged user

By default,configure will check (in this order) for the existance of a ugeite, daemonor
nobody and use the first match.

You can override this with the optiaronfigure --enable-identity=user . The user does not
need to exist already; the install script knows how to create a new user (on Linux, FreeBSD,
NetBSD, Solaris, HP-UX, OSF1).

After successful installation, you will be asked to make install-userin order to: (i) create
the user that you specified ¢onfigure if it does not exist alreadynfake install-userwill
check for this), and (ii) chown/chmod some directories.

After runningmake install andmake install-user, you should have a sane setup.

Lodfile directory

The system lodfile directory usually requires root privileges to write there (otherwise log files
may easily get corrupted ...). To enable yule to write the log file and the HTML status file, a
(sub-)directory should be used that is owned by yule. dddigure script and the Makefile will
do that automatically with the default layout (i.e. a directvy/log/yule will be created).

67

Chapter 6. yule, the log server

Data files

The data file directory is now owned by root and world readable by default. If you chown it to a
suitablegroupfor the unprivileged yule user, you can make it group readable blalie that it
is not required, and weakens the security, if the data file directory is writeable for the server.

GnuPG signed configuration file

The unprivileged yule user must havegaupg subdirectory in its home directory, holding the
public keyring with the key to verify the signature.

PID file

The PID file is written with before dropping root privileges. Therefore yule will not be able to
overwrite it later (which is a GoodThing), or remove it upon exit (it will usually be able to
recognize and handle a stale PID file on startup). Still, it may be a good idea to remove it after
stopping yule. The provided start/stop scripts for various architectures will handle this.

6.3. Registering a client

Clients must be registered with yule to make a connectimmnection attempts by unknown clients
will be rejected The respective section in the server configuration file looks like:

[Clients]

#

A client

#
Client=HOSTNAME_CLIENT1@saltl@verifierl
#

another one

#
Client=HOSTNAME_CLIENT2@salt2@verifier2
#

These entries have to be computed in the following way:

1. Choose gpassword 16 chars hexadecimal, i.e. only 0 -- 9, a -- f, A -- F allowed. To generate a
random password, you may use:

sh$ yule --gen-password

2. Use the programsamhain_setpwdo reset the password in the compildient binary (that is,
samhain, not yule) to the one you have chosamhain_setpwdakes three arguments: (1) the
binary name, (2) an extension to append to the new binary, and (3) the password. It will read the
executable binary (argument 1), insert the password (argument 3), and write a modified binary
with the specified extension (argument 2). Riamhain_setpwdwithout arguments for usage
information. Example:

68

Chapter 6. yule, the log server

sh$ samhain_setpwd samhain EXT 0123456789ABCDEF

3. Use the server’s convenience function ’-P’ to create a registration entry. Example:
sh$ yule -P 0123456789ABCDEF

4. The output will look like:
Client=HOSTNAME @salt@verifier

You now have to replacdOSTNAMEwith the fully qualified domain name of the host on

which the client should rurefceptionif the server cannot determine the fully qualified
hostname, you may need to use the numerical address instead. You will see the problem in a
'Connection refused’ message from the server).

5. Put the registration entry into the servers’s configuration file, under the section h§atiamgs]
(seeSection 6.2). You need to send SIGHUP to the server for the new entry to take effect.

6. Repeat steps (1) -- (5) for any number of clients you need (actually, you need a registration entry
for each client’s host, but you don't neccesarily need different passwords for each client. I.e. you
may skip steps (1) -- (3)).

If you have a default directory layout[&lients] section right at the end of the server config file, and
your client is client.mydomain.com, then you could e.g. do:

bash$ PASSWD='yule --gen-password’

bash$ samhain_setpwd samhain new $PASSWD

bash$ scp samhain.new root@client.mydomain.com:/usr/local/sbin/samhain
bash$ ENTRY='yule -P $PASSWD | sed s%HOSTNAME%client.mydomain.com%’
bash$ echo $ENTRY >> /etc/yulerc

bash$ kill -HUP ‘cat /var/run/yule.pid’

6.4. Enabling logging to the server

If the client is properly registered with the server, all you need to do is to set an appropriate threshold
for remote logging in the client’s configuration file, and give the IP address of the server (if not
already compiled in). Of course, the client must be compiled with-#able-network=client

switch.

Example for client configuration:

69

Chapter 6. yule, the log server

[Log]

#

Threshold for forwarding to the log server
#

ExportSeverity=crit

[Misc]

SetLogServer=IP address

Example for server configuration:

[Clients]

#

Register a client to allow it to connect
#
Client=client.mydomain.com@salt@verifier

6.5. Enabling baseline database / configuration file
download from the server

A significant advantage of samhain is the option to store baseline databases and configuration files
on the central log server (yule), from where they can be downloaded by clients upons startup. In
order to use this option, clients must be configured to retrieve these files from the server rather than
from the local filesystem.

Tip: Obviously, retrieving the configuration file from the log server requires that the IP address of
the log server is compiled in, using the option ./configure --with-logserver=HOST

Downloaded files are written to a temporary file that is created in the home directory of the effective
user (usuallyoot. The filename is chosen at random, the file is opened for writing after checking
that it does not exist already, and immediately thereafter unlinked. Thus the name of the file will be
deleted from the filesystem, but the file itself will remain in existence until the file descriptor
referring it is closed (seman unlink), or the process exits (on exit, all open file descriptors
belonging to the process are closed).

6.5.1. Configuration file

If the compiled-in path to the configuration file begins with the special value
“REQ_FROM_SERVER?”, thelient will request to download the configuration file from yule (i.e.
from the server).

70

Chapter 6. yule, the log server

If “REQ_FROM_SERVER” is followed by a path, treient will use the path following
“REQ_FROM_SERVER?” as a fallback ibfd only if) it is initializing the database. This is a
convenience feature to allow initializing the database(s) before the client is registered with the server.

Example:./configure --with-config-file=REQ_FROM_SERVER/etc/conf.samhairin this case,

the client will request to download the configuration file from the server. If the connection to the
server fails, it will exit on error if run in 'check’ mode, but fallback fetc/conf.samhain as its
configuration file, if run in 'init’ mode.

Note: For obvious security reasons, the client cannot specify the path to the configuration file on
the server side. The server will lookup the configuration file using only the hostname of the client
and the compiled-in path for the ’localstatedir’ (see below). The default for 'localstatedir’ is /var .

The server will search for the configuration file to send in the following order of priority (paths are
explained inSection A.5). CLIENTNAMEis the hostname of the client’s host, as listed in the
server’s config file in th€lients section:

1. localstatedir/lib/yule/rc. CLIENTNAME

2. localstatedir/lib/yule/rc

6.5.2. Database file

If the compiled-in path to the database file begins with the special value “REQ_FROM_SERVER”,
theclientwill request to download the database file from yule (i.e. from the server).

CAVEAT

“REQ_FROM_SERVER” must be followed by a path that will be used for
writing the database file when initializing. Upon initialization, the database is
always written to a local file, and must be copied with scp to the server (the
client cannot upload the database file to the server, as this would open a
security hole).

Example:--with-data-file=REQ_FROM_SERVER/var/lib/samhain/data.samhainin this case,
the client will request to download the database file from the serelieiking and will create a
local database fil&ar/lib/samhain/data.samhain if initializing. You have to usecpto copy
the file signature database to the server then.

71

Chapter 6. yule, the log server

Note: For obvious security reasons, the client cannot specify the path to the database file on the
server side. The server will lookup the databse file using only the hostname of the client and the
compiled-in path for the 'localstatedir’ (see below). The default for ’localstatedir’ is /var .

The server will search for the database file to send in the following order of priorityS@e®n
A.5>). CLIENTNAMEis the hostname of the client’s host, as listed in the server’s config file in the
Clients section:

1. localstatedir/lib/yule/file. CLIENTNAME

2. localstatedir/lib/yuleffile

6.6. Rules for logging of client messages

As the log server may receive quite a large number of log messages from clients (depending on the
number of clients and their threshold settings), client messages are treated specially and by default
are only logged to facilities suitable for bulk logging: console, log file, relational database (if
enabled), and external (if enabled).

To override this behavior, you can set the optidggeClientSeverityyes in the[Misc] section of the
configuration file. In that case, the client message severity is used, and client messages are treated
just like local messages (i.e. like those from the server itself).

If you also want to filter by message class, there is also an ops@ClientClassyes

All client messages are recorded in the main log file by default. However, it is possible to use
separate log files for individual clients. This can be enabled Wi#bSeparateLogsyes/no in the

Misc section of the server configuration file. No locking will be performed for such separate client
log files (only one instance of the server can listen on the TCP port, thus there will be no concurrent
access).

6.7. Detecting 'dead’ clients

Itis possible to set a time limit for the maximum time between two consecutive messages of a client
(optionSetClientTimeLimit in the [Misc] section of the configuration file). If the time limit is
exceeded without a message from the client, the server will issue a warning. The default is 86400
seconds (one day); specifying a value of 0 will switch off this option.

72

Chapter 6. yule, the log server

You may want to seExportSeverity = mark (or any lower threshold) in the client configuration file
in order to log timestamp (heartbeat’) messages to the server.

6.8. The HTML server status page

yule writes the current status to a HTML file. The default name of this fidarishain.html , and by
default it is placed irivar/log

The file contains a header with the current status of the server (starting time, current time, open
connections, total connections since start), and a table that lists the status of all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive

The client has not connected since server startup.

Started

The client has started. This message may be missing if the client was already running at server
startup.

Exited

The client has exited.

Message

The client has sent a message.

File transfer

The client has fetched a file from the server.

ILLEGAL

Startup without prior exit. May indicate a preceding abnormal termination.

PANIC

The client has encountered a fatal error condition.

FAILED

An unsuccessful attempt to set up a session key or transfer a message.

POLICY

The client has discovered a policy violation.

73

Chapter 6. yule, the log server

TIME_EXCEEDED

No message (e.g. timestamp) has been received from the client for a defined amount of time
(default 1 day, option SetClientTimeLimit).

For each client, the latest event of each given type is listed. Events are sorted by time. Events that
have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table entry, and (iii) the file end.
Templates must be namédad.html , entry.html , andfoot.ntml , respectively, and must be
located in the data directory (i.lecalstatedir/lib/yule/ , seeSection A.5). The distribution
package includes two sample filesad.html andfoot.html

The following replacements will be made in the head template:

Placeholder Significance

%T Current time.

%S Startup time.

%L Time of last connection.

%0 Open connections.

%A Total connections since startup.

%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

Placeholder Significance
%H Host name.
%S Event.

%T Time of event.

Tip: A literal ‘%’ in the HTML output must be represented by a '% ’ (%’ followed by space) in the
template.

6.9. Chroot

As of version 1.7.0, yuleis able to chroot itself after startup and initialization, either by using the
command line option

bash$ yule --chroot= [chrootdir

74

Chapter 6. yule, the log server

or by requesting it in the configuration file:

[Misc]
SetChrootDir= path

In order to prepare for the chroot jail, the following is required:

Tip: In the scripts subdirectory of the source directory there is a script chroot.sh to perform
steps (4) and (5) (only for Linux).

1. Compile normally. Make sure you use eithierv/random (default if existing) or EGD (Entropy
Gathering Daemon) for the entropy deviceddf/random does not exist, the default is the
'standard unix entropy gatherer’, which uses the output of many system commands, and
therefore is not suitable within a chroot jail.

2. Install with the command(s):

bash$ make DESTDIR=chrootdir install
bash$ make DESTDIR=chrootdir install-user
bash$ make install-boot

3. Fix the path to the yule binary in the runlevel start/stop script installed by the last command.

4. Prepare the chroot environment. Basically, you need ufeterotdir

(a) an entropy device, eithdev/random , deviurandom , or an EGD (Entropy Gathering
Daemon) socket,

(b) minimumetc/passwd |, etc/group files, at least with entries for root and the unprivileged
yule user. Replace passwords with an asterix, and make sure the homedirectory of the
unprivileged yule user is correct within the chroot jail.

(c) files required for DN Setc/nsswitch.conf , etc/hosts , etc/host.conf ,
etc/resolv.conf , etc/services , etc/protocols

5. Create a symlinketc/yulerc to /chrootdir/etc/yulerc (no, it will not work the other
way round).

Because yule chroots after startup, there is no need to copy shared libraries into the chroot jail. They
will be loaded upon startup, before the chroot() occurs.

75

Chapter 6. yule, the log server

Tip: If you are using syslog logging, you need a dev/log socket in the chroot jail. Modern syslog
incarnations will allow you to have an additional socket using the command:

bash$ syslogd -a /chrootdir /dev/log

Tip: If you are using a GnuPG-signed configuration, you will need a working copy of gpg in the
chroot jail.

6.10. Restrict access with libwrap (tcp wrappers)

As of version 1.8.0, yule can be build with support for libwrap, i.e. Wietse Venema'’s tcp wrappers
libraries. To enable this, use teenfigure option--with-libwrap.

You can then restrict access to yule with appropriate entries ifettigosts.allow and/or
/etc/hosts.deny files.

Note: If you use the configure option --enable-install-name=NAME, then yule will be installed
as 'NAME’, and this is what you then need to use as the daemons name in the
/etc/hosts.allow and/or /etc/hosts.deny files.

6.11. Sending commands to clients

It is generally not possible to send commands to clients, because the client does not listen on the
network (the client needs root privileges to perform its tasks, and you don’t want a root network
daemon).

However, it is possible to send a command if and when a client connects to deliver a message. As of
version 1.8.0, clients use a new version of the client/server protocol, which includes a set of
pre-defined commands that are understood by the client. Currently implementRE8LaDADto

reload the configuration, ariTOPto terminate the client.

Pre-1.8.0 clients, or clients build with the (optional) old protocol version, will simply ignore such
commands.

76

Chapter 6. yule, the log server

6.11.1. Communicating with the server

As of version 1.8.0, yule can send a command to a client if and when a client connects to deliver a
message, e.g. a timestamp message (clients are not listening on the network, and thus commands can
only be sent together with the confirmation when a message is received).

Of course the server needs to know which (if any) command to send. Therefore it can open a unix
domain socket upon startup (in the same directory as the PID file). Opening this command interface
must be requested explicitely with the optiBetUseSocketyes (in the [Misc] section).

A separate application yulectl is compiled together with the server that provides a command-line
interface to access this facility. Ugalectl -h for help.

6.11.2. Authenticating to the server

There are two methods to authenticate to the server. If supported by the OS, authentication is done
by passing the credentials of the socket peer to the server (this is a special feature of unix domain
sockets), andgequiring the UIDof the the socket peer (i.e. the user using the yulectl program) to
match a UID as set with th8etSocketAllowUid=UID option (default is O, i.e. only root can use the
interface).

Note: If passing credentials over the socket is supported by the OS, it is not possible to fake
these credentials - they are supplied by the kernel. Therefore, the server can rely on the fact that
the user process writing to the socket has indeed the UID passed via the socket. Thus, the
access rights to the socket are basically not important (on some systems, they are not even
recognized/respected at all).

As of version 1.8.12, if (and only if) passing credentials over the socket is not supported, you can
specify a password with theetSocketPasswordgassword option. The password must be 14
characters or less, and must not include the '@’ character.

Of course you must supply the password to yulectl if you want to communicate with the server. To
do so, create a filgulectl_cred in your home directory, and place the password there.

Note: Password authentication is not supported if the OS supports the aforementioned method.

77

Chapter 6. yule, the log server

6.12. Syslog logging

yule (version 1.2.8+) can listen on port 514/udp to collect reports from syslog clients. This must be
enabled by using theenable-udpconfigure option when compiling. In addition, in tMisc section
of the configuration file, you must set the opti8atUDPActiveyes .

This option requires to run yule either @m®ot, or asSUID root. For security, yule will drop root

privileges irrevocably immediately after binding to port 514/udp. It will assume the credentials of
some compiled-in user. The default is 'yule’, 'daemon’, or 'nobody’ (i.e. the first of these that exists
on your system). You can override this with thenable-identity=USERoption. Note that each

daemon should have its own user/group, such that an exploit will not give write access to files owned
by other daemons.

6.13. Server-to-server relay

As of version 2.2.0, it is possible to relay messages from one yule server to another. This is
implemented in the same way as client-to-server connectivity, i.e. the relaying server and the
endpoint server must be set up in the same way as a samhain client and a server, respectively (see
Section 6.3).

6.14. Performance tuning

Even without tweaking, the server can probably handle some 100 connections per second on a
500Mhz i686. Depending on the verbosity of the logging that you wish, this should suffice even for
some thousand clients.

Almost all time is spent (i) in the HMAC function that computes the message signatures, and (i) if
you do not have the gmp (GNU MP) multiple precision library, in the multiple precision arithmetic
library (for SRP authentication).

The reason for (ii) is that samhain/yule will use a simple, portable, but not very efficient MP library
that is included in the source code, if gmp is not present on your system.

To improve performance, you can:

- install gmp, remove the file config.cache in the source directory (if you haveaniigure
before), and then ruconfigure andmake again. Theconfigure script should automatically detect
the gmp library and link against it.

78

Chapter 6. yule, the log server

- use a simple keyed hash (HASH-TIGER), which will compute signatures as HASH(message key)
instead of the HMAC (HMAC-TIGER). This will save two of the three hash computations
required for a HMAC signature.

CAVEAT

Make sure you use the same signature type on server and client !

[Misc]

#

use simple keyed hash for message signatures

Make sure you set this both for client and server
#

MACType=HASH-TIGER

« build a static binary (use theenable-staticswitch for configure). Static binaries are faster, and
also more secure, because they cannot be subverted via libc.

Note: Unfortunately this is not possible on Solaris. This is not a bug in samhain, but is
because some functions in Solaris are only supplied by dynamic libraries.

- change the compiler switches to optimize more aggressively.

- if on a commercial UNIX, check whether the native compiler produces faster code than gcc (you
need an ANSI C compiler). Theonfigure script honours CC (compiler) and CFLAGS
environment variables.

79

Chapter 7. Hooks for External Programs

samhain provides several hooks for external programs for (re-)processing the audit trail, including
pipes, a System V message queue, and the option to call external programs.

7.1. Pipes

It is possible to use named pipes as 'console’ device(s) (samhain supports up to two console devices,
both of which may be named pipes. You can set the device path at compile tinfee(éem A.5),
and/or in the configuration file (s&ection 4.8).

7.2. System V message queue

It is possible to have a SystemV IPC message queue (which is definitely more elegant than named
pipes) as additional 'console’ device. You need to compile withable-message-queus4ODEand
use the optioMessageQueueActiveFF .

The default mode is 0700 (rwx------), but this is a compile option (message queues are
kernel-resident, but have access permissions like files). To get the System V IPC key for the message
queue, usétok("tmp", '#); (man ftok, man msgctl man msgrcy). Note that not all systems

support SysV IPC.

Tip: There is a demo application (a GNOME panel applet) available on the download site that
uses the message queue.

7.3. Calling external programs

samhain may invoke external programs or scripts in order to implement logging capabilities that are
not supported by samhain itself (e.g. pager support). This section provides an overview of this
capability.

External programs/scripts invoked for logging will receive the formatted log messagidianThe
program should expect thatdoutandstderrare closed, and that the working directory is the root
directory.

80

Chapter 7. Hooks for External Programs

Each external program must be defined in the configuration file, in a section starting with the header
[External]. In addition,ExternalSeverity must be set to an appropriate threshold in the section

[Log].

Each program definition starts with the line

OpenCommand=full/path

Options for the program may follow. The definition of an external program is ended when the section
ends, or when anoth@penCommand=full/path line for the next command is encountered.

- There are several places in samhain where external programs may be called. Each such place is
identified by atype Currently, valid types are:

- log — An external logging facility, which is handled like other logging facilities. The program
will receive the logged message on stdin, followed by a newline, followed by the HHDIg]
and another newline.

. srv— Executed by the server, whenever the status of a client, as displayed in the HTML status
table, has changed. The program will receive the client hostname, the timestamp, and the new
status, followed by a newline, followed igOF] and another newline.

« Any number of external programs may be defined in the configuration file. Each external program
has atype which islog by default. Whenever external programs are called, all programs of the
appropriataypeare executed. Thigpecan be set witlSetType=ype

- External programs must be on a trusted path &eaation 2.10.2), i.e. must not be writeable by
untrusted users.

« For enhanced security, the (192-bit TIGER) checksum of the external program/script may be
specified in the configuration fil&etChecksum=zhecksum (one string, no blanks in checksum)

- Command line arguments and environment variables for each external program are configurable
(the default is no command line arguments, and only the timezone in the environment):

SetCommandline=full_command_line (full command line starting with the name of the
program)

Setenviron=KEY=value

« The user whose credentials shall be used, can be spe8#&#@redentialssername

- Some filters are available to make the execution of an external program dependent on the message
content:

81

Chapter 7. Hooks for External Programs

SetFilterNot=list If any word in 'list’ matches a word in the message, the program is not
executed, else

SetFilterAnd=list if any word in’list’ is missing in the message, the program is not executed,
else

SetFilterOr=list if none of the words in 'list’ is in the message, the program is not executed.
Any filter not defined is not evaluated.

. ltis possible to set a 'deadtime’. Within that 'deadtime’, the respective external program will be
executed only once (if triggered¥etDeadtime=seconds

7.3.1. Example setup for paging

The distribution contains two example perl scripts for paging and SMS messages (example_pager.pl,
example_smes.pl). The paging script will page via a web CGl script at www.pagemart.com

(obviously will work only for their pagers), the SMS script is for any German 'free SMS’ web site

that outsources free SMS to pitcom (with a suitable query on Google you can find such sites; you can
then inspect the HTML form to set proper values for the required form variables.)

If you know some Perl, both scripts can be adapted fairly easily to other providers. Below is an
example setup for calling example_pager.pl as an external logging facility.

[External]

start definition of first external program
OpenCommand=/ustr/local/bin/example_pager.pl
SetType=log

arguments
SetCommandline=example_pager.pl pager_id
environment
SetEnviron=HOME=/home/moses
SetEnviron=PATH=/bin:/usr/bin:/usr/local/bin

checksum
SetChecksum=FCBD3377B65F92F1701AFEEF3B5ES8A80ED4936FD0OD172C84
credentials

SetCredentials=moses

filter

SetFilterOr=POLICY

deadtime

SetDeadtime=3600

82

Chapter 8. Additional Features — Signed
Configuration/Database Files

Both the configuration file (se®ection C.%) and the database of file signatur8g¢tion 5.&) may
always be cleartext signed by GnuGIp¢). Therecommendedptions are:

gpg -a --clearsign --not-dash-escapediLE

If compiled with support for signatures, samhain will invakag to verify the signature. To compile
with gpg support, use the option:

Jconfigure --with-gpg=/full/path/to/gpg

« samhain will check that the path to thpg executable is writeablenly by trusted useréee
Section 2.10.%).

« The program will be called without using the shell, with its full path (as compiled in), and with an
environment that is limited to the HOME variable.

« The public key must be in in the subdirectt#t®ME/.gnupg , where HOME is the home directory
of the effective user (usuallpot).

- From the command line, the signature must verify correctly wittth/to/gpg --status-fd 1
--verify FILE when invoked by the effective user of samhain (ususbyt).

Tip: There is a Perl script samhainadmin.pl to facilitate some tasks related to the administration
of signed configuration and database files (see Section 8.1>).

CAVEAT

When signing, the option --not-dash-escaped is recommended, because
otherwise the database might get corrupted. However, this implies that after a
database update, you must remove the old signature first, before re-signing
the database. Without 'dash escaping’, gpg will not properly handle the old
signature. See the tip just above.

As signatures on files are only useful as long as you can trugfgexecutable, theonfigure
script will determine the TIGER19hecksunof the gpg executable, which will be compiled into
samhain. In case of an error, you can specify the checksum by hand with:

83

Chapter 8. Additional Features — Signed Configuration/Database Files

--with-checksum="CHECKSUM— or — --without-checksum

CHECKSUMshould be the checksum as printed by

gpg --load-extension tiger --print-md TIGER192/path/to/gpg — or — samhain -H
Ipath/to/gpg (the full line of outputwith spaces

Example:--with-checksum="/usr/bin/gpg: 1C739B6A F768C949 FABEF313 5F0B37F5
22ED4A27 60D59664"

WARNING

Compiling in the GnuPG checksum will tie the samhain executable to the gpg
executable. If you upgrade GnuPG, you will need to re-compile samhain. If you
don't like this, use '--with-checksum=no’ (or '--without-checksum’ , which is
equivalent).

Likewise, it is highly recommended to compile in tkey fingerprintof the signature key, which then
will be verified after checking the signature itself:

--with-fp=FINGERPRINT

Example(spaces in FINGERPRINT do not matterwith-fp="EF6C EF54 701A OAFD B86A
FAC3 1AAD 26C8 OF57 1F6C"

Tip: make install will gpg sign the configuration file before installation.

bash$./configure --with-gpg=/usr/bin/gpg --with-fp=EF6CEF54701A0AFDB86AF4C31AAD26C80F571F6C
bash$ make

bash$ su

bash$ make install

bash$ samhain -t init

bash$ gpg -a --clearsign /var/lib/samhain/samhain_file

bash$ mv /var/lib/samhain/samhain_file.asc /var/lib/samhain/samhain_file

samhain will report the signature key owner and the key fingerprint as obtainedfrgnif both

files are present and checked (i.e. when checking files against the database), both must be signed
with the same key. If the verification is successful, samhain will only report the signature on the
configuration file. If the verification fails, or the key for the configuration file is different from that of
the database file, an error message will result.

84

Chapter 8. Additional Features — Signed Configuration/Database Files

8.1. The samhainadmin script

In the subdirectorgcripts/ of the source directory you will find a Perl scrggmhainadmin.pl
to facilitate some tasks related to the administration of signed configuration and database files (e.g.
examine/create/remove signatures). By default, this scripgtisnstalled

bash$ samhainadmin.pl --help
samhainadmin.pl { -m F | --sign-cfdfile } [options] [in.cfgfile]
Sign the configuration file. If in.cfdfile is given, sign it
and install it as configuration file.

samhainadmin.pl { -m f | --print-cfgfile } [options]
Print the configuration file to stdout. Signatures are removed.

samhainadmin.pl { -m D | --sign-datafile } [options] [in.datafile]
Sign the database file. If in.datafile is given, sign it
and install it as database file.

samhainadmin.pl { -m d | --print-datafile } [options]
Print the database file to stdout. Signatures are removed. Use
option --list to list files in database rather than printing the raw file.

samhainadmin.pl { -m R | --remove-signature } [options] filel [file2 ...]
Remove cleartext signature from input file(s). The file
is replaced by the non-signed file.

samhainadmin.pl { -m E | --sign } [options] filel [file2 ...]
Sign file(s) with a cleartext signature. The file
is replaced by the signed file.

samhainadmin.pl { -m e | --examine } [options] filel [file2 ...]
Report signature status of file(s).

samhainadmin.pl { -m G | --generate-keys } [options]
Generate a PGP keypair to use for signing.

Options:
-c cfgfile --cfgfile cfgfile
Select an alternate configuration file.

-d datafile --datafile datafile
Select an alternate database file.

-p passphrase --passphrase passphrase
Set the passphrase for gpg. By default, gpg will ask.

-l --list
List the files in database rather than printing the raw file.

-V --verbose
Verbose output.

85

Chapter 9. Additional Features — Stealth

If an intruder does not know that samhain is running, s/he will make no attempt to subvert it. Hence,
you may consider to run samhain in stealth mode, using some of the options discussed in this section.

9.1. Hiding the executable

samhain may be compiled with support for a stealth mode of operation, meaning that the program
can be run without any obvious trace of its presence on disk. The following compile-time options are
provided:

--enable-stealth=or_val provides the following measures:

1. All embedded strings are obfuscated by XORing them with some valuevalchosen at
compile time. The allowed range fgor_valis 128 to 255.

2. The messages in the log file are obfuscated by XORing themxwithval The built-in routine
for validating the log file gamhain -L /path/to/logfile) will handle this transparently. You may
specify as path an already existing binary file (e.g. an executable, or a JPEG image), to which
the log will get appended.

Tip: Use samhain -jL /path/to/logfile if you just want to view rather than verify the lodfile.

3. Strings in the database file are obfuscated by XORing themxaithval You may append the
database file to some binary file (e.g. an executable, or a JPEG image), if you like.

4. The configuration file must be steganographically hidden in a postscript image file (the image
data must be uncompressed). To create such a file from an existing image, you may use e.g. the
programconvert, which is part of the ImageMagick package, suclt@svert +compress
ima.jpg ima.ps

Tip: make install will do this automatically before installation.

To hide/extract the configuration data within/from the postscript file, a utility program
samhain_stealthis provided. Use it without options to get help.

Note: If --enable-stealth is used together with --with-gpg , then the config file must be
signed before hiding it (rather than signing the PS image file afterwards).

86

Chapter 9. Additional Features — Stealth

--enable-micro-stealth=or_val is like --enable-stealth but uses a 'normal’ configuration file
(not hidden steganographically).

--enable-nocl[=ARG]will disables command line parsing. The optional argument is a 'magic’ word
that will enable reading command-line arguments fidin If the first command-line argument is

not the 'magic’ word, all command line arguments will be ignored. This allows to start the program
with completely arbitrary command-line arguments.

--enable-install-nameaNAMEWill rename every installed file frorsamhainto NAME when doing a
make install (standalone/client installation), and likewise rename installed files jndeto NAME
when doing anake install (server installation). Also, the boot scripts will be updated accordingly.
Files created by samhain (e.g. the database) will also $ewvdainreplaced byNAME in their
filenames.

Tip: The man pages have far too much specific information enabling an intruder to infer the
presence of samhain. There is no point in changing samhain to NAME there — this would rather
help an intruder to find out what NAME is. You probably want to avoid installing man8/samhain.8
and man5/samhainrc.5.

9.1.1. Using kernel modules to hide samhain (Linux/ix86
only)

Important: These modules modify the running kernel. Please read this section carefully (in
particular the caveats noted at the end), and test the modules before installing. Without proper
testing it may happen that you need to reboot into single user mode to remove the modules and
to make your system useable again ...

If the configure optior-enable-khide=SYSTEM_MAPis used, two (pre-2.6 kernel) or one (2.6
kernel) loadable kernel module(s) will be built. These are nasaethain_hide.o /
samhain_erase.o (pre-2.6) orsamhain_hide.ko (2.6).

SYSTEM_MAP must be the path to the System.map file for your current kernel (e.g.
/boot/System.map-rh-2.4.18-3). samhain_hide.o will hide every file/directory/process

with the string NAME (from the configure optiorenable-install-name=NAME). If the configure
option--enable-install-nameis not used, NAME is set to samhain. To hide the module itself, the
second moduleamhain_erase.o is provided. Loading and immediately thereafter unloading this
module will hide any module with the string NAME in its nanmeake install will install the kernel
modules to the appropriate place. They will be loaded when booting into runlevel 2, 3, 4, or 5.

87

Chapter 9. Additional Features — Stealth

With 2.6 kernels, only one kernel modwemhain_hide.ko will be build. This module is

self-hiding, i.e. the separatamhain_erase module is not needed anymore. Otherwise it works as
described above. Self-hiding can be switched off by passing the option removeme=0’ to the module:
insmod ./samhain_hide.ko removeme=0

Building a linux kernel module requires a proper build environment. You should have a link
/lib/modules/‘uname -r‘/build which points to a functional build environment. Usually, you
need to install the kernel sources for your kernel, and eventually (if compiling the modules fails) you
may need to configure the kernel source for your kernel:

sh$ cd /your/kernel/source/directory

sh$ make mrproper

sh$ make cloneconfig

sh$ make dep (obsolete for 2.6)

sh$ make modules (only for 2.6)

sh$ cd /lib/modules/‘'uname -r'

sh$ In -s /your/kernel/source/directory build

Caveatno. 1

The hiding module will hide any process or file containing the name of the
samhain. This implies that an intruder can hide herself if she can guess that
name. You are strongly encouraged to use the ./configure option
--enable-install-name=NAME to change the executable name to something
really difficult to guess.

Caveat no. 2

The modules are kernel-specific, and must be recompiled whenever the
currently used kernel is recompiled or replaced by another one (even if the
kernel version is identical). Failure to do so might lead to a kernel panic. The
same is true if the System.map that you have specified at build time is not the
one corresponding to your current kernel.

Caveat no. 3

When the samhain_hide module is hidden, the kernel doesn’t know anymore
about its existence, thus it cannot be removed except by rebooting. On pre-2.6
kernels, hiding the samhain_hide.o module requires loading/unloading the
samhain_erase.o module. On 2.6 kernels, the samhain_hide.ko module will
automatically hide itself after loading, except if you pass the option
‘removeme=0’ to the module: insmod ./samhain_hide.ko removeme=0

88

Chapter 9. Additional Features — Stealth

Caveat no. 4 - Important Linux 2.6 issue

The stealth module builds fine on Linux 2.6 (if the build system is properly
configured — see above). It was tested on two systems: 2.6.5-7.104-smp
(SUSE 9.1) and 2.6.6 (no SMP). It only worked on the latter system, while the
first one was rendered unuseable (Is and ps didn’t work anymore). Not sure
about the reason.

Because on 2.6 the module will by default automatically hide itself, and cannot
be removed then (except by rebooting), you should test the module with the
option 'removeme=0’, like e.g.: insmod ./samhain_hide.ko removeme=0

Tip: Hidden files can still be accessed if their names are known, thus using the option
--enable-install-name to rename installed files is recommended for security (also see caveat
no. 1 above).

Tip: Using the modules at system boot may cause problems with the GNOME (1.2) gdm display
manager (seen on SUSE 7.4 with the Ximian desktop; no problems observed with kdm). In case
of problems, you may need to reboot into single-user mode and edit the boot init script ...

9.2. Packing the executable

For even more stealthyness, it is possible to pack and encrypt the samhain executable. The packer is
just moderately effective, but portable. Note that the encryption key of course must be present in the
packed executable, thus this is no secure encryption, but rather is intended for obfuscation of the
executable. There is a make target for packing the samhain executable:

make samhain.pk

On executionsamhain.pkwill unpack into a temporary file and execute this, passing along all
command line arguments. The temporary file is createahin , if the sticky bit is set on this

directory, and inusr/bin ~ otherwise. The filename is chosen at random, and the file is only opened
if it does not exist already (otherwise a new random filename will be tried). The file permission is set
to 700.

The directory entry for the unpacked executable will be deleted after executing it, but on systems
with a/proc filesystem, the deleted entry may show up there. In particular, this is the case for
Linux. You should be aware that this may raise suspicion.

89

Chapter 9. Additional Features — Stealth
On Linux, the/proc filesystem is used to call the unpacked executable without a race condition, by
executing/proc/self/fd/NN , where NN is the file descriptor to which the unpacked executable

has been written. On other systems, the filename of the unpacked executable must be used, which
creates a race condition (the file may be modified between creation and execution).

The packed executable will not honour the SUID bit.

90

Chapter 10. Deployment to remote hosts

10.1. Method A: The deployment system

samhain includes a system to facilitate deployment of the client to remote hosts. This system enables
you to: build and store binary packages for different operating systems, install them, create baseline
databases upon installation, update the server configuration, and maintain the client database
required by the beltane web-based console.

The system comprises a shell scideploy.shthat will be installed in the same directory as the
samhain/yule (by defaultysr/local/sbin), and a directory tree that will be installed below the
samhain/yule data directory (s8ection 10.1.2). The script and the directory tree can be relocated
freely. There is a configuration filg.deploy.conf that is created in the home directory of the
user wherdeploy.shis run for the first time, where you can specify the default for the top level
directory of the system.

Note: In the following, an architecture is just a label for some group of hosts, typically a
particular operating system (or some particular installation thereof). As long as you know what
the label means, you can choose it freely (alphanumeric + underscore).

The architecture for a build/install host (i.e. the association between a host and the
architecture-specific configuration data) is currently specified via a command-line option.

The system allows to use per-architecture customized build options, as well as per-host customized
runtime configuration files.

By default, the system will search for a sufficiently advanced incarnation of dialog to provide a nice
user interface. You can switch this off in favour of a plain console interface, if you prefer (or if you
want to run the script non-interactively).

To use this system, you must first install it with the command:

sh$ make install-deploy
Installation tip: This system is somewhat tied to the server (yule). While you can safely install it
later, installing it together with the server will take care that the defaults are already correct.

Upon first invocation a configuration file ~/.deploy.conf will be written, where you can modify
the defaults settings.

91

Chapter 10. Deployment to remote hosts

Backward compatibility

The deployment system has been completely revised in version 2.0 of
samhain. It will not work with samhain versions below 2.0 (i.e. you cannot
install them using this system). However, the default location and format of the
client database (used by the beltane web-based console) has not changed.

Installing the new version of the deploy system will not overwrite the old
version (deploy.sh will be installed as deploy2.sh, if an old version is detected).

10.1.1. Requirements

1. You must have compiled and installed the server (yule) on the local host where you use the
deploy system.

2. You must have installed the deployment system by usiage deploy-install This will install

the scriptdeploy.sh into thesbindir (default/usr/local/sbin , but depends on your
configure options), and the deployment system into
localstatedir/install_name/profiles (default/var/lib/yule/profiles , but

depends on your configure options).

If you already have installed the deprecated version 1 deployment system, the script will be
installed asieploy2.sh

3. For each architecture that you define, there must be (at leasbudidéhostwhere development
tools (C compiler, make, strip) are available to build the client executable.

4. 0n each remote where you want to build or install, you should be able to login as root with ssh
using RSA authentication, such that ssh-agent can be used.

Tip: To use RSA-based authentication in a secure way, you may proceed as follows:

Use ssh-keygen to create a public/private key pair. Don't forget to set a passphrase for the
private key (ssh-keygen will ask for it).

Copy the public key (HOME/.ssh/identity.pub for the ssh protocol version 1,
HOME/.ssh/id_rsa.pub for ssh protocol version 2) to HOME/.ssh/authorized_keys on any
remote host where you want to log in. Do not copy the private key HOME/.ssh/identity (ssh

protocol version 1) or HOME/.ssh/id_rsa (ssh protocol version 2) to any untrusted host !

On your central host, execute the commands (use "ssh-agent -c" if you are using a csh-style
shell):

bash$ eval ‘ssh-agent -s'
bash$ ssh-add

92

You can then ssh/scp without typing the passphrase again, until you exit the current shell.

Chapter 10. Deployment to remote hosts

10.1.2. Layout of the deployment system

(localstatedir)/(install_name)/profiles/

source ------------ > (tarballs)
configs ----------- > (default configs)
archpkg

|-- architecture -> (compiled package, setup script)

hosts
:-- hosthame ----- > (optional host-specific config)
libexec ----------- > (scripts)
private ----------- > (gpg key)
tmp

10.1.2.1. The configs subdirectory

Theconfigs subdirectory holds for each architecture at least two files (example files will be placed
there upon installation of the deployment system):

<architecture-.configure (required)

The configure options for this architecture; one option per line, each enclosed in single quotes.

If this file does not exist, it will be copied fromeneric.configure

installation, and holds (only) some minimum options.

<architecture-.samhainrc (required)

, Which is created upon

The default runtime configuration file for a client running on this architecture. It is possible to
override this on installation with a fileosts/ <hostname >/samhainrc

93

Chapter 10. Deployment to remote hosts

<architecture-.preinstall (optional)

The shell script to run before installing a client. Typically this script would shutdown the
running client, if there is one.

Defaults tolibexec/preinstall

<architecture-.postinstall (optional)

The shell script to run after installing a client. This script receives the client password as first
(and only) argument, and typically would set the password in the client binary.

Defaults tolibexec/postinstall

<architecture-.initscript (optional)

The shell script to initialize/update the baseline database file installing a client.

Defaults tolibexec/initscript

10.1.2.2. The archpkg subdirectory

Thearchpkg directory holds for each architecture a subdirectotyipkg/ <architecture >,
where compiled binary installer packages are stored.

For each build, up to four files will be stored: (a) the binary installer package

samhain- <version >. <format >, (b) the configure options used

(configure- <version >. <format >), (c) the samhain-install.sh script generated during the build
(install- <version >. <format >), and (only for packed executables) the client password set in
the executableRASSWD<version >. <format >).

10.1.3. Customizing the system

10.1.3.1. Setting default options

If you want to change the default options, you can set some of them via a configuration file
~/.deploy.conf , which is created upon the first invocationdsploy.sh

94

Chapter 10. Deployment to remote hosts

10.1.3.2. Adding support for an architecture

To add support for another architectutarch>, just create the two filesarch >.configure
(configure options) anetarch >.samhainrc ~ (runtime configuration) in theonfigs directory of
the deployment system (s&ection 10.1.3).

Upon installation of the system, a template §jneric.configure is created, which contains the
minimum options for a client.

10.1.3.3. Per-architecture pre-/postinstallation scripts

The default scripts for preinstallation (shutting down the running client) and postinstallation (setting
the client password, fixing the local configuration file), and the script for database initialization are
located in thdibexec directory. You can override them for some (or all) architectures by storing
architecture-specific filesarch >.preinstall , <arch >.postinstall , <arch >.initscrip

in theconfigs directory.

10.1.3.4. Per-host runtime configuration

If you want to override the runtime configuration fdenfigs/ <arch >.samhainrc on a per-host
basis, you need to store a host-specific runtime configuration file as
hosts/ <hostname >/samhainrc , before you rurdeploy.sh install

10.1.4. Using the deploy.sh script

Tip: When run for the first time, deploy.sh will create a configuration file ~/.deploy.conf with
some default configuration options. You may want to review this file. Note that you can override
all options there with command-line options; the configuration file is just for convenience, if you
don't like the defaults and don’t want to type the corresponding option on the command line
every time.

deploy.shcan be invoked in three ways:

bash$ deploy.sh --help

This will provide a general overview.

bash$ deploy.sh --help command

This will provide help on a specific command (where command can be any of:
‘clean’, 'download’, 'checksrc’, ’'build’, or ’install’.

bash$ deploy.sh [options] command

This will run ’command’ with the specified options.

95

Chapter 10. Deployment to remote hosts

A log of the last run will be kept inmp/logfile.lastrun

commanccan be any of the following:

info

Provides information on installed clients, or available installer packages.

clean
Removes source tarballs from tbeurce subdirectory of the deploy system. Removes unused
installer packages from thechpkg/ <arch > subdirectories of the deploy system.
download
Download a source tarball from the distribution site, verify the GnuPG signature (gpg must be
installed), and install it into theource subdirectory of the deploy systeiRequiresone of:
waget, curl, links, lynx, fetch, or lwp-request
checksrc
Check the GnuPG signatures of available source tarballs isotivee subdirectory of the
deploy system (gpg must be installed). Optionally delete tarballs with no/invalid signature.
build

Build a binary installer package for the chosen architecture from one of the tarballs in the
source subdirectory, and store it in theechpkg/ <architecture > subdirectory (which
will be created if it does not exist yet). Requires a fierchitecture >.configure and a
file <architecture >.samhainrc in theconfigs subdirectory.

install

Copy a pre-built binary package (built witteploy.sh build) to a remote host, stop the client
running there (if any), install the (new) client, update the server configuration file and reload the
server, initialize the file signature database and fetch it from the remote host.

uninstall

Remove a samhain client that was previously installed ddploy.sh install

10.1.4.1. General options

-q | --quiet | --quiet=2 Produce output suitable for logging. Note that --quiet=2 implies --yes (see
below).

-s | --simulatePrint what would be done, but do not actually change the system.

-y | --yesAssume yes as answer to all prompts and run non-interactively.

96

Chapter 10. Deployment to remote hosts

-o <file> | --logfile=<file> Specify an output file for messages that would go to stdout otherwise.
Has no effect on stderr (error messages).

-d <dialog> | --dialog=<dialog> Specify your preferred "dialog" clone (e.g. Xdialog). Use "no" to
force plain text.

10.1.5. deploy.sh info

This command will show information for hosts in the client database (default), or for available
binary installer packages.

10.1.5.1. Specific options

--packagesShow information for available installer packages rather than for clients.

10.1.6. deploy.sh clean

This command will clean unused files: source tarballs irsthece subdirectory, and unused
installer packages in theechpkg/ <arch > subdirectories.

10.1.6.1. Specific options

There are no specific options for this command.

10.1.7. deploy.sh download

This command will download a source tarball from the distribution website, verify its GhnuPG
signature, and install it into theurce subdirectory. This command requires that eitivget or
lynx is in your PATH.

Manual installation of source: This note applies if you want to download source manually
instead. Samhain distribution tarballs contain exactly two files: first, a source tarball with the
source code, and second, its GnuPG signature. For installation into the source subdirectory, the
distribution tarball must be unpacked, and both the source source tarball and its GhuPG
signature moved into the source subdirectory.

97

Chapter 10. Deployment to remote hosts

10.1.7.1. Specific options

--version=<version> The version of samhain to download. The default is "current" to download the
current version.

10.1.8. deploy.sh checksrc

This command will check the GnuPG signatures of source tarballs iothee subdirectory.

10.1.8.1. Specific options

--deleteDelete source tarballs if PGP signature cannot be verified.

10.1.9. deploy.sh build

This command will create a temporary directory on a remote build host, copy the selected version of
the source there, build the selected format of the binary installer package, retrieve and store the
package into tharchpkg/ <architecture > subdirectory, and remove the temporary build

directory.

For each build, up to four files will be stored: (a) the binary installer package

samhain- <version >. <format >, (b) the configure options used

(configure- <version >. <format >), (C) the samhain-install.sh script generated during the build
(install- <version >. <format >), and (only for packed executables) the client password set in
the executableRASSWD<version >. <format >).

Package formats: Note that the build host must provide the required tools if you want to build a
package for the native package manager (i.e. deb, rpm, tbz2, depot (HP-UX), or solaris pkg). On
RPM-based Linux distributions and Gentoo Linux, building of RPMs and tbz2s, respectively,
should just work. Debian requires additional packages for building debs.

The "run" binary package format does not require additional tools (it is a self-extracting tar
package based on the makeself application, which is included in the samhain distribution). Use
/bin/sh <package > --help for details.

10.1.9.1. Specific options

--host=<hostname> The build host.

98

Chapter 10. Deployment to remote hosts
--arch=<arch> The architecture to build for. This is used to get the "./configure" options from the

file configs/ <arch >.configure , and to store the binary package into the directory
archpkg/ <arch >.

--version=<version> The version of samhain you want to build. Must be in ¢herce
subdirectory.

--format= <run|rpm|deb|tbz2|depot|solaris-pkg> The format of the binary installer package.

"run" is a portable (Unix) package based on makeself, "deb" is a Debian package, "tbz2" is a binary
Gentoo Linux package, "rpm" is an RPM package, "depot" is an HP-UX binary package, and
"solaris-pkg" for Sun Solaris.

--packed=<password> Build a packed executable, and set the client password before packing.
--user=<username> Login as<usernamg on the build host (defaults to root).

--add-path=<path> Append<patl> to the PATH variable on the build host.

10.1.10. deploy.sh install

This command will create a temporary directory on a remote host, copy the selected version of the
installer package, its corresponding samhain-install.sh script, the runtime configuration file, and the
preinstall, postinstall, initscripts scripts there. It will then:

(A) run thepreinstall script on the client, which shuts down the running samhain daemon (if
there is any).

(B) install the binary installer package on the client.

(C) run thepostinstall script on the client, which sets the client password (unless the binary is
packed), and replaces the default runtime configuration file with the proper one. The latter step is
required, becausdeploy.sh build builds from the pristine source, so the runtime configuration file in
the installer package is just the default one.

(D) copy the proper client runtime configuration file to the server data directory (as
rc. <client_name >), fix the server configuration file, and restart the server (which will fail
non-fatally if the server is not running).

(E) run theinitscript script on the client, which initializes (or updates) the baseline database.

99

Chapter 10. Deployment to remote hosts

(F) retrieve the baseline database, copy it to the server data directdity.(as<client_name >),
and remove the temporary directory on the client.

The runtime configuration file: If hosts/ <hostname >/ <arch >.samhainrc or
hosts/ <hostname >/samhainrc exists, this will be used (in this order of preference), otherwise
configs/ <arch >.samhainrc will be used. If the latter does not exist, the command will fail.

Transparent handling of particular build options: The build options '--enable-stealth=." is
handled by determining the argument from the configure options that were used for the build,
and preparing the runtime configuration file appropriately. |.e., you should provide a 'normal’,
plain-text configuration file.

The build option *--with-nocl=.." is handled by determining the argument (which is required for
database initialization) from the configure options that were used for the build, and passing it to
the initscript script.

10.1.10.1. Specific options
--host=<hostname> The host on which to install.

--group=<foobar> The group to which you want to assign that client (default: none). This is used
by the beltane web console to restrict access to users which are members of that group.

--arch=<arch> The architecture to install. This is used to get the installer package from the
directoryarchpkg/ <arch >/ .

--version=<version> The version of samhain you want to install. An installer package for this
version must exist in tharchpkg/ <arch >/ subdirectory.

--format=<run|rpm|deb|tbz2|depot|solaris-pkg> The format of the binary installer package.

"run" is a portable (Unix) package based on makeself, "deb" is a Debian package, "tbz2" is a binary
Gentoo Linux package, "rpm" is an RPM package, "depot" is an HP-UX binary package, and
"solaris-pkg" for Sun Solaris.

--yule_exec=zpath> Path to the yule executable.
--yule_conf=<path> Path to the yule configuration file.

--yule_data=<path> Path to the yule data directory.

100

Chapter 10. Deployment to remote hosts

--no-init Do not initialize the file signature (baseline) database (and consequentially, do not replace
thefile. <host > file on server.

--no-rcfile Do not replace thec. <host > file on server.
--no-start Do not start up the client after installation.

--local=<command> An optional command executed locally (i.e. on the server) twice (with the last
argument set to ‘first’ and 'second’, respectively. First is after client config file installation (i.e.
before baseline database initialisation on the client), second is just before client startup. Will be
called acommandhostname arch basedir yule_data first|second

10.1.11. deploy.sh uninstall

This command will remove a samhain client that was previously installed by dsiplgy.sh install
10.1.11.1. Specific options

--host=<hostname> The host on which to uninstall.

10.1.12. Usage notes

Warning

On Solaris, the PATH environment variable on the remote host (where you
build or deploy) may get set according to /etc/default/su, which may be
different from what you would expect (noted by S. Bailey).

10.2. Method B: The native package manager

Samhain provides an easy method to creat#om binary packagesith the native package
manager of your operating system. Basically, this works like:

bash$./configure [your preferred options]
bash$ make rpm|deb|tbz2|depot|solaris-pkg

101

Chapter 10. Deployment to remote hosts
I.e. the binary package will be built with the compile options chosen in the preceédorgigure
command. Supported package formats gy (e.g. Redhat, SUSE, ..deb(Debian),tbz2(Gentoo
Linux), depot(HP-UX), andsolaris-pkg(Solaris).

Tip: The binary package will use the OS-specific samhainrc.0S configuration file from the
source directory, thus if you customize this, your package will contain your customized version.

Tip: Upon installation, the package will not automatically initialize the baseline database, and not
start the daemon (though it will install the runlevel script to start upon boot).

Note: For reasons explained in Section 11.2>, we do not recommend to distribute binary
packages to third parties. On the other hand, it is perfectly ok to use a self-built binary package
to install/distribute samhain on your machine/within your own network.

10.2.1. Building an RPM

10.2.1.1. Custom RPM

If you run./configurein the source directory, a spec fdlemhain.spec will be created from
samhain.spec.in . You can then usmake rpm to create source and binary RPMsnoake srpm
to create just the source RPM.

The RPM will be located irusr/src/(distribution-specific)/ RPMS/i386 . Installing the
RPM will not initializethe database automatically.

If anything fails during the build (and after installation has begun), just cd into the build directory
and do amake uninstall && make uninstall-boot. If building for a non-RedHat system, the error
messages will tell you which file paths in the spec file were incorrect.

10.2.1.2. Single-host
If you want to create an RPM for a single-host version of samhain without any fancy options, you
can just run

bash$ rpmbuild -ta samhain- version .tar.gz

on the tarball (there is a default spec file in there).

102

Chapter 10. Deployment to remote hosts

The RPM will be located irusr/src/(distribution-specific)/ RPMS/i386 . Installing the
RPM will not initializethe baseline database automatically.

10.2.2. Building an HP-UX package

First run./configurein the source directory with your preferred options, then dae&e depot The
result should be a package nansatchhain.depot , that can be installed witswinstall. Installing
the package wilhot initializethe baseline database automatically.

10.2.3. Building a Solaris package

Note: This is experimental and not well tested. Constructive feedback from experienced Solaris
administrators is welcome.

First run./configurein the source directory with your preferred options, then daeke
solaris-pkg. The result should be a package namadihain.pkg

10.2.4. Building a Gentoo Linux package

First run./configure [your preferred options] in the source directory (reminder: ugeonfigure
--prefix=USR, NOT ./configure --prefix=/usrfor standard paths), then doveake thz2 The.tbz2
package will be inusr/portage/packages/All (this is just how Gentoo package building
works).

The Gentoo package thus created wil initializethe database automatically upon installation. The
thbz2 package file will be irlusr/portage/packages/All (this is just how Gentoo package
building works).

Note: If you just want to install on your own system, rather than building a package for other
machines, you can use the command make emerge (after running ./configure , of course).

10.2.5. Building a Debian package

First run./configurein the source directory (reminder: ugeonfigure --prefix=USR NOT
.Jconfigure --prefix=/usr for standard paths), then davaake deh The.deb package and the

103

Chapter 10. Deployment to remote hosts

correspondingdsc file will be in the directory above the source directory (this is just how Debian
package building works).

You will need the following additional Debian packages in order to build a Debian packageget
fakeroot, apt-get debmake apt-get debhelper apt-get devscripts andapt-get cpia

The Debian package thus created willt initializethe database automatically upon installation. It
will be located in thegparent directoryof the source directory (that’s just the way the Debian build
system works).

104

Chapter 11. Security Design

11.1. Usage

It is recommended to:

- compile a static binarynot linked to shared libraries), using the configure opti@mable-static
if possible (not possible on Solaris — this is a Solaris problem, not a problem of samhain)

- strip the binary(on i386 Linux/FreeBSD, also use the providssdrip utility: strip samhain &&
sstrip samhain). This will help somewhat against intruders that try to run it under a debugger ...

Note: make install will always strip the excutables. Trying to strip again by hand may corrupt
the executable.

« use signed database/configuration filesng the configure optionwith-gpg=PATH_TO_GPG,
and compile in the fingerprint of the signing key-{vith-fp=...)

- take alook at the stealth optionsvhile 'security by obscuritybnlyis a very bad idea, it certainly
helps if an intruder does not know what defenses you have in place

If you use gprecompiledsamhain executable (e.g. from a binary distribution), in principle a
prospective intruder could easily obtain a copy of the executable and analyze it in advance. This will
enable her/him to generate fake audit trails and/or generate a trojan for this particular binary
distribution.

For this reason, it is possible for the user to add more key material into the binary executable. This is
done with the command:

samhain --add-key=key@/path/to/executable

This will read the file/path/to/executable , add the keykey, which should not contain a’'@’

(because it has a special meaning, separating key from path), overwrite any key previously set by this
command, and write the new binary to the locatimath/to/executable.out (i.e. with .out

appended). You should then copy the new binary to the location of the old one (i.e. overwrite the old
one).

105

Chapter 11. Security Design

11.2. Integrity of the executable

Each samhain executable contains a compiled-in key, that is used when the signatures of emails
and/or lodfile entries are verified. By default, a cryptographically strong random key is generated by
theconfigure script at compile time. Thus, each build is unique, and signature verification will fail if
a different build is used, except if the compiled-in key was set to a common value for both builds.

To set a user-defined key, there is an option
.Jconfigure --enable-baseB1,B2
where B1,B2 should be two integers in the range 0...2147483647.

The key generated byonfigure is printed in the configure script’s output. It is recommended that
you save this key and use it for further builds.

Whenever you try to verify the integrity of e-mails or log file entries, this compiled-in key is used (to
be more specific: the signature key is encrypted with a one-time pad generated from the message
itself and the compiled-in key). As a result, if executable B is used to verify the integrity of e-mails
sent by executable Antegrity verification will failif the compiled-in keys of A and B do not match.
This can be used to check the integrity of A in a straightforward way (check e-mails on another host,
using a different executable compiled with the same key).

Obviously, this scheme can be broken, but it requires an intruder to disassemble/decompile and
analyze the existing samhain executable, rather than simply replace it with a precompiled trojan.

However, if you use @recompiledsamhain executable (e.g. from a binary distribution), in principle
a prospective intruder could easily obtain a copy of the executable and analyze it in advance. This
will enable her/him to generate fake audit trails and/or generate a trojan for this particular binary
distribution.

For this reason, it is possible for the user to add more key material into the binary executable. This is
done with the command:

samhain --add-key=key@/path/to/executable

This will read the file/path/to/executable , add the keykey, which should not contain a’'@’

(because it has a special meaning, separating key from path), overwrite any key previously set by this
command, and write the new binary to the locatfadth/to/executable.out (i.e. with .out

appended).

106

Chapter 11. Security Design

WARNING

Using a precompiled samhain executable from a binary package distribution is
not recommended unless you add in key material as described above.

11.3. Client executable integrity

If you use samhain in a client/server setup, the client needs to authenticate to the server using a
password that is located within the client executable, at one of several possible places (where the
valid place for your particular build is chosen at random at compile time). If the password is set, the
alternative places are filled with random values.

Upon authentication to the server, client and server negotiate ephemeral keys for signing and
encrypting further communication.

This implies that an intruder needs to analyse the running process to obtain knowledge of the
signing/encryption keys in order to successfully fake a valid communication with the server, or she
needs to analyse/disassemble the executable in order to find the password.

11.4. The server

The server does not need root privileges. Therefore, if it is started with root privileges, it will drop
them irrevocably after startup. If a privileged port (below 1024) must be opened, the server will first
open it, then drop root, and only thereafter accept any connection on the port.

The server can be chrooted, and actually has a config file option to do so by itself (which means that
you don’t need to copy shared libraries into the chroot environment).

(If your clients are configured to download baseline databases and configuration files from the
server:) The server does not need write access to the directory where client baseline databases and
configuration files are stored, and it would be wise to deny such access (chown to some other user,
and allow group read access for the server).

11.5. General

Obviously, a security application should not open up security holes by itself. Therefore, an inportant
aspect in the development of samhain has been the security of the program itself. While samhain

107

Chapter 11. Security Design

comes with no warranty (see the license), much effort has been invested to identify security
problems and avoid them.

As the client requires root privileges, while the server does not, the clients has no open socket to
listen on the network. Consequently, all client/server connections are initiated by the client.

To avoid buffer overflows, only secure string handling functions are used to limit the amount of data
copied into a buffer to the size of the respective buffer (unless it is known in advance that the data
will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to zero thereafter. Signal
handlers, timers, and file creation mask are reset, and the core dump size is set to zero. If started as
daemon, all file descriptors are closed, and the first three streams are opfteethtdl

If external programs are used (in the entropy gatheréteiffrandom is not available), they are
invoked directly (without using the shell), with the full path, and with a limited environment (by
default only the timezone). Privileged credentials are dropped before calling the external program.

With respect to its own files (configuration, database, the log file, and its lock), on access samhain
checks the complete path for write access by untrusted users. Some care has been taken to avoid race
conditions on file access as far as possible.

Critical information, including session keys and data read from files for computing checksums, is
kept in memory for which paging is disabled (if the operating system supports this). This way it is
avoided that such information is transfered to a persistent swap store medium, where it might be
accessible to unauthorized users.

Random numbers are generated from a pseudo-random number generator (PRNG) with a period of
2788 (actually by mixing the output from three instances of the PRNG). The internal state of the
PRNG is seeded from a strong entropy source (if availdtde/random is used, else lots of

system statistics is pooled and mixed with a hash function). The PRNG is re-seeded from the entropy
source at regular intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of the PRNG can be inferred.
To avoid this, the internal state of the PRNG is hidden by hashing the output with a hash function.

108

Appendix A. List of options for the ./configure
script

A.l. General

--with-rnd=egd/dev/unix/default
The entropy gatherer to use. 'egd’ is the Entropy Gathering Daemon (EGD), 'dev’ is
/dev/irandom, 'unix’ is the built-in Unix entropy gatherer (similar to EGD), and 'default’ will
check for /dev/random first, and use 'unix’ as fallback.

--with-egd-socket=NAME
The path to the EGD socket. Defaulldgalstatedir/lib/samhain/entropy (see
Section A.5.

--enable-identity=USER

The username to use when dropping root privileges (defenldody.

--with-sender=SENDER
The username of the sender for e-mail, or a complete e-mail address. If only a username is
given,SENDER@{FQDN_of_local_host}ill be used for the sender. Defaultdaemon
--with-recipient=ADDR
The recepient(s) for e-mail, seperated by whitespace (max. 8). You can add recepients in the
configuration file as well.
--with-trusted=UID
Trusted users (must be a comma-separated list of numerical UIDs). Only required if the
configuration file must be on a path writeable by others tbahand theeffectiveuser.
--with-timeserver=HOST

Set host address for time server (default is to use own clock). You can set this in the
configuration file as well. An address in the configuration file will take precedence. Note that
the simple 'time’ service (port 37/tcp) is used.

--with-alttimeserver=HOST

Set host address for an alternative (backup) time server.

--enable-stealth=XOR_VAL

Enable stealth mode, and set XOR_VAL. XOR_VAL must be decimal, in the range 127 -- 255,
and will be used to obfuscate literal strings.

109

Appendix A. List of options for the ./configure script

--enable-micro-stealth=XOR_VAL

As --with-stealth, but without steganographic hidden configuration file.

--enable-nocl=PW
Command line parsing is disabled, but command-line arguments will be read from STDIN if
the first command line argument is PW. PW="" (empty string) will disable command line
parsing completely. This option may be used as addition to --enable(-micro)-stealth to prevent
interactive enforcement of telltale output.

--enable-install-name=NAME
Upon installation, rename every file frasamhain (oryule for the server) ttNAMETo be
used in conjunction with --with-(micro-)stealth.

--enable-khide=SYSTEM_MAP

(Linux only) compile kernel modules to hide all files with NAME (from
--enable-install-name=NAME) within the path. By default, NAME is 'samhain’ for the
client/standalone version, and 'yule’ for the server. SYSTEM_MAP must be the path to the
System.map file corresponding to the kernel.

--enable-base=B1,B2

Set compiled-in key for email and logfile signature verification. ONE string (no space) made of
TWO comma-separated integers in the range 0 -- 214748364 Gedtien 11.2 for details on
this option.
--enable-db-reload
[CLIENT ONLY] Enable reload of file database on SIGHUP (otherwise, only the config file
will be read again).
--enable-xml-log

Enable XML format for the log file.

--with-database=mysql/postgresql/oracle/odbc
Support logging to a relational database (MySQL, PostgreSQL, Oracle or unixODBC). Oracle
and unixODBC are not fully tested.

--with-prelude

Support logging to the Prelude IDS system. Requires the libprelude library.

--with-libprelude-prefix=PFX
Prefix where libprelude is installed. This will be used to seditifrelude-config in the
PFX/bin/ directory.

--enable-debug

Enable debugging. Will slow down things, increase resource usage, and may leak information
that should be kept secure. Will dump 'core’ and 'samhain_backtrace’ in the root directory on
segfault. Do not use in production code.

110

Appendix A. List of options for the ./configure script

--enable-ptrace

Periodically check whether a debugger is attached, and abort if yes. Only takes effect if
--enable-debuds not used. Only tested on Linux.

--with-cflags=FLAGS

Additional flags to pass to the compiler.

--with-libs=LIBS

Additional libraries to link with.

--disable-largefile

Disable support for large files(2GB). Large file support is enabled automatically if your
system supports it.

--enable-udp

This options enables code to listen on port 514/upd, i.e. the syslog port. Thus the server can
receive syslog reports from remote hosts (if they are configured to send), and log them to any of
the log facilities supported by samhain. If you compile in support for this, you still need to
enable it in the runtime configuration file.

A.2. Optional modules to perfor additional checks

These are all client-only options, as the server does not perform any checks (if you want to run
checks on the log server host, you need to run a client there as well).

--enable-login-watch

[CLIENT ONLY] Compile in the module to watch for login/logout events.

--enable-mounts-check

[CLIENT ONLY] Compile in the module to check for correct mount options.

--enable-userfiles

[CLIENT ONLY] Compile in the module to check for files in user home directories (i.e. with
paths relative to $SHOME for all users).

--enable-suidcheck

[CLIENT ONLY] Compile in the module to check file system for SUID/SGID binaries not in
the database.

--with-kcheck=SYSTEM_MAP

[CLIENT ONLY] (Linux/FreeBSD/OpenBSD only) Compile in the module to check for
runtime kernel modifications (e.g. clobbered kernel syscalls) to detect kernel-level rootkits.
SYSTEM_MAP must be the path to tisystem.map file corresponding to the kernel.

111

Appendix A. List of options for the ./configure script

A.3. OpenPGP Signatures on Configuration/Database
Files

--with-gpg=PATH
Use GnuPG to verify database/configuration file. The public key of the effective user, usually
root, (in~/.gnupg/pubring.gpg) will be used.

--with-checksum=CHECKSUM
Compile in TIGER checksum of thgpg binary. CHECKSUM must be the full line output by
samhain ogpgwhen computing the checksum.

--with-fp=FINGERPRINT

Compile in the fingerprint of the key used to sign the configuration/database file. If used,
samhain will verify the fingerprint, but still report on the used public key.

A.4. Client/Server Connectivity

--enable-network=client/server

Compile a client or server, rather than a standalone version.

--disable-encrypt

Disable encryption for client/server communication.

--enable-encrypt=1

Use version 1 encryption for client/server communication. Samhain 1.8.x introduces an
enhanced version (version 2) of the client/server encryption. By default, the server is backward
compatible, i.e. it can communicate with both version 1 (pre-1.8.x) and version 2 clients.
Building the server with the --enable-encrypt=1 option makes it impossible to communicate
with version 2 clients.

--disable-srp

Disable the use of the zero-knowledge SRP protocol to authenticate to log server, and use a
(faster, but less secure) challenge-response protdhid.must be set to the same value for
client and server, i.e. either disabled for client and server, or for none of both.

--with-libwrap[=PATH)]
[SERVER ONLY] Build the server with support for libwrap (Wietse Venema'’s TCP wrappers
library). In /etc/hosts.allow and/or/etc/hosts.deny , use 'yule’ or the name defined
with --enable-install-name=NAME for the name of the daemon.

--with-port=PORT

The port on which the server will listen (default is 49777), or to which the client will connect,
respectivelyThis must be set to the same value for client and se@mly needed if this port is

112

Appendix A. List of options for the ./configure script

already used by some other application. Port numbers below 1024 reaptipgivileges for the
server.
--with-logserver=HOST

[CLIENT ONLY] The host address of the log server. This can be set in the configuration file. A
compiled-in address is only required if you want to fetch the configuration file from the log
server. An address in the configuration file will take precedence.

--with-altlogserver=HOST
[CLIENT ONLY] The host address of an alternative (backup) log server.

A.5. Paths

Compiled-in paths may be as long as 255 chars. Iftvih-stealth option is used, the limitis 127
chars. The paths to the database, log file, and pid/lock file can be overridden in the configuration file
(seeSection C.2).

Tip: If using NFS with clients on different hosts accesing the same files, you can set the
database, log file, and pid/lock file names to "AUTO" in the configuration file to simply tack on the
hostname on the compiled-in path. The same length limits apply.

--prefix=PREFIX

The install prefix. Default is none, and using the Filesystem Hierarchy Standard 2.2 directory
layout. If you prefer the GNU layout (everything under /usr/local), use --prefix=/usr/local. See
Section 2.16 for details.

--sbindir=DIR

The binary directory (default isisr/local/sbin)
--localstatedir=DPFX

The state data directory prefix (defaultvar). Data will be written to DPFX/likhstall_name
--with-state-dir=DIR

The state data directory (defaultD®FX/lib/install_name). Data will be written to this
directory.

--mandir=MPREFIX
The man directory directory prefix (default/isr/local/share/man).
--with-tmp-dir=TPFX

The directory where tmp files are created (config/database downloads from server, extracted
PGP-signed parts of config/database files) (defatiOsME).

113

Appendix A. List of options for the ./configure script

--with-config-file=FILE

The full path of the configuration file (default fstc/(install_name)rc).
--with-log-file=FILE

The path of the log file (default BPFX/log/samhain_log).
--with-pid-file=FILE

The path of the PID file (default BPFX/run/(install_name).pid).
--with-html-file=FILE

[SERVER ONLY] The path of the HTML status file where the current status of clients is
displayed (default i®PFX/log/(install_name).html).

--with-console=PATH
The path of the console (default/gev/console). This may be a FIFO.

--with-altconsole=PATH

The path of a second console (default is none). This may be a FIFO. If defined, console output
will always go to both console devices (but note that console devices are only used when
running as daemon).

114

Appendix B. List of command line options

B.1. General

A W N P

10.

11.

12.

13.

14.

15.

16.

17.

.-D, --daemorRun as daemon.
. --foregroundStay in the foreground, do not run as daemon.
.-f, --foreverLoop forever, even if not daemon.

.--bind-address=IP-Address- Use this IP address (i.e. interface) for outgoing connections (e.g.

on multi-interface machines).

. --server-port=<port number- Connect to this port on the server (client-side option for

client-server connection).

.-S <arg>, --set-syslog-severityzarg> Set the severity threshold for syslagg may be one of

none, debug, info, notice, warn, mark, err, crit, alert

.-| <arg>, --set-log-severity=zarg> Set the severity threshold for logfilatg may be one of

none, debug, info, notice, warn, mark, err, crit, alert

.-m <arg>, --set-mail-severity=zarg> Set the severity threshold for e-maikg may be one of

none, debug, info, notice, warn, mark, err, crit, alert

. --set-database-severityzarg> Set the severity threshold for logging to a RDBM#&g may be

one ofnone, debug, info, notice, warn, mark, err, crit, alert

--set-prelude-severityzarg> Set the severity threshold for logging to the Prelude IDS system.
arg may be one ofone, debug, info, notice, warn, mark, err, crit, alert

-p <arg>, --set-print-severity=zarg> Set the severity threshold for terminal/consealey may
be one ofhone, debug, info, notice, warn, mark, err, crit, alert

-X <arg>, --set-extern-severityzarg> Set the severity threshold for external prograngsy.
may be one ohone, debug, info, notice, warn, mark, err, crit, alert

-L <arg>, --verify-log=<arg> Verify the integrity of the log file and print the entriegrg is the
path of the log file).

-j, --just-list Modify -L to just list the logfile, rather than verify (to de-obfuscate the lodfile if
you have compiled for stealth mod€rder mattersthis must come before -L.

-M <arg>, --verify-mail=<arg> Verify the integrity of e-mailed messagex{ is the path of
the mail box).

-V <arg>, --add-key=carg> Add key material to the compiled-in key (s8ection 11.2). arg
must be of the fornkey@/path/to/executabl®utput will be written to
/path/to/executable.out

-H <arg>, --hash-string=carg> Print the hash of a string / the checksum of a file, and exit. If
arg starts with a /', it is assumed to be a file, otherwise a string. This function is useful to test
the hash algorithm.

115

Appendix B. List of command line options

18.-z <arg>, --tracelevel=carg> If compiled with --enable-debug: arg 0 to switch on debug
output. If compiled with --enable-trace: arg0 max. level for call tracing.

19.-i <arg>, --milestone=carg> If compiled with --enable-trace: trace from milestone arg to
arg+1. If arg = -1, trace all.

20.-d <arg>, --list-database=carg> List the database filarg (use “default” for the compiled-in
path).

21.-a, --full-detail Modify -d to list full details (hnumeric mode, owner, group, all three timestamps
(ctime, mtime, atime), and the checksuBrder mattersthis must come before -d.

22. --delimitedSame as --full-detail, but withomma-delimitedields.
23.-c, --copyrightPrint copyright information and exit.

24.-h, --helpPrint a short help on command line options and exit.
25.--trace-enablePrint a trace of the execution flow.

26.--trace-logfile=<arg> Use filearg to log the trace.

B.2. samhain

1.-t <arg>, --set-checksum-test=arg> Set file checking tanit, update or check Useinit to
create the databasgpdateto update it, angdheckto check files against the database.

Tip: Yes, it is normal that update takes much more time than init.

2.4, --interactiveUse interactive mode farpdate(ask before updating an entry).

3.-e <arg>, --set-export-severityzarg> Set the severity threshold for forwarding messages to
the log serverarg may be one ofione, debug, info, notice, warn, mark, err, crit, alert

4. -r <arg>, --recursion=<arg> Set the default recursion level for directories (0 -- 99).

5. --init2stdoutWrite the database to stdout when performing the initialization.

B.3. yule

1.-S, --servelRun as server. Only required if the binary is dual-purpose.

2.-q, --qualifiedLog received messages with the fully qualified name of client host.
3. --chroot=<arg> Chroot to to the directorgrg (should be an absolute path.
4,

-G, --gen-passworebenerate a random password suitable for use in the following option (16
hexadecimal digits).

116

Appendix B. List of command line options

5.-P <arg>, --password=carg> Compute a client registry entrgrg is the chosen password (16
hexadecimal digits).

117

Appendix C. List of configuration file options

C.1. General

The configuration file for samhain is namstinhainrc by default. Also by default, it is placed in
/etc . (Name and location is configurable at compile time). The distribution package comes with a
commented sample configuration file.

This section introduces the general structure of the configuration file. Details on individual entries in
the configuration files are discussedSaction 5.% (which files to monitor) Section 4.% (what

should be logged, which logging facilities should be used, and how these facilities are properly
configured), an®ection 5.1% (monitoring login/logout events).

The configuration file contains sevegactionsindicated byheadingsn square brackets€Each

section may hold zero or mokey=value pairs. Keys are not case sensitive, and space around the
'="is allowed. Blank lines and lines starting with '# are comments. Everything before the first
section and after afiEOF] is ignored. ThgEOF] end-of-file marker is optional. The file thus looks
like:

this is a comment
[Section heading]
keyl=value
key2=value

[Another section]

key3=value
key4=value

For boolean values the following are equivalent (case-insensitive): True, Yes, or 1. Likewise, the
following are equivalent (case-insensitive): False, No, or 0.

In lists, values can be separated by space, tabs, or commas.

Tip: Each section may occur multiple times.

Note: You can explicitely end the configuration file with an [EOF] (on a separate line), but this is
not required, unless there is some junk beyond that may confuse the parser. A PGP signature
does not qualify as 'junk’ if samhain is compiled to verify the signature.

118

Appendix C. List of configuration file options

C.1.1. Conditionals

Conditional inclusion of entries for some host(s) is supported via any nhumber of @hostname/@end
directives. @hostname and @end must each be on separate lines. Lines in between will only be read
if hostnamd&which may be a regular expression) matches the local host.

Likewise, conditional inclusion of entries based on system type is supported via any humber of
$sysname:release:machine/$end directisgsname:release:machif@ the local host can be
determined using the commandame -srmand may be a regular expression.

A" infront of the’@’/\$’ will invert its meaning. Conditionals may be nested up to 15 levels.

@hostname

only read if hostname matches local host

@end

l@hostname

not read if hosthame matches local host

@end

#

$sysname:release:machine

only read if sysname:release:machine matches local host
$end

I$sysname:release:machine

not read if sysname:release:machine matches local host
$end

C.2. Files to check

Allowed section headings (s&ection 5.4.% for more details) are:

[Attributes] , [LogFiles], [GrowingLogFiles], [IgnoreAll] , [lgnoreNone], [ReadOnly], [User0],
[User1], and[User2], and[User3], and[User4], and[Prelink]

Placing an entry under one of these headings will select the respective policy for that entry (see
Section 5.4.%). Entries under the above section headings must be of the form:

dir=[optional numerical recursion depth]path

file=path

119

Appendix C. List of configuration file options

C.3. Severity of events
Section heading (se®ection 4.1.% for more details):
[EventSeverity]

Entries:
SeverityReadOnly=severity
SeverityLogFiles=severity
SeverityGrowinglLogs=severity
SeveritylgnoreNone=severity
SeveritylgnoreAll=severity
SeverityAttributes=severity
SeverityUserO=severity
SeverityUserl=severity
SeverityUser2=severity
SeverityUser3=severity
SeverityUser4=severity
SeverityPrelink=severity
SeverityFiles=severity
SeverityDirs=severity

SeverityNamesseverity

120

Appendix C. List of configuration file options

severitymay be one ohone, debug, info, notice, warn, mark, err, crit, alert

C.4. Logging thresholds
Section heading (se®ection 4.3 for more details):
[Log]
Entries:
MailSeverity=list of [optional specifier]threshold
PrintSeverity=list of [optional specifier]threshold
LogSeverityist of [optional specifier]threshold
SyslogSeveritydist of [optional specifier]threshold
PreludeSeverityist of [optional specifier]threshold
ExportSeverity=list of [optional specifier]threshold
ExternalSeverity=list of [optional specifier]threshold
DatabaseSeveritytist of [optional specifier]threshold
thresholdmay be one ohone, debug, info, notice, warn, mark, err, crit, alert

The optional specifier may be one of ", ’I’, or '=’, which are interpreted as 'all’, 'excluding’, and

‘only’, respectively. Examples: specifying '*" is equal to specify 'debug’; specifying '!*' is equal to
specifying 'none’; 'info,lalert’ is the range from ’info’ to ’crit’; and ’info,!=mark’ is info and above,
but excluding 'mark’.

C.5. Watching login/logout events

Section heading:

121

Appendix C. List of configuration file options

[Utmp]

Entries:

LoginCheckActive=boolean — "1’ to switch on, '0’ to switch off.

LoginChecklnterval=seconds — Interval between checks.

SeverityLogin=severity = — Severity for login events.
SeverityLoginMulti= severity = — Severity for multiple logins by same user.
SeverityLogout=severity =~ — Severity for logout events.

C.6. Checking for kernel module rootkits
Section heading:
[Kernel]
Entries:
KernelCheckActive=boolean — 'true’ to switch on, 'false’ to switch off.
KernelChecklinterval=seconds — Interval between checks.
KernelChecklDT=boolean — Check the Interrupt Descriptor Table (default true).
SeverityKernel=severity = — Severity for events.
KernelSystemCall =address — the address of system_call (grep system_call System.map)

KernelSyscallTable =address — the address of sys_call_table (grep ' sys_call_table’
System.map)

KernelProcRoot = address — the address of proc_root (grep ' proc_root$’ System.map)

122

Appendix C. List of configuration file options

KernelProcRootlops =address — the address of proc_root_inode_operations (grep
proc_root_inode_operations System.map)

KernelProcRootLookup = address — the address of proc_root_lookup (grep proc_root_lookup
System.map)

C.7. Checking for SUID/SGID files
Section heading:
[SuidCheck]
Entries:
SuidCheckActive=hoolean — 1’ to switch on, '0’ to switch off.

SuidCheckExcludepath — A directory (and its subdirectories) to exclude from the check. Only
one directory can be specified this way.

SuidCheckScheduleschedule — Crontab-like schedule for checks.
SeveritySuidCheck=everity = — Severity for events.

SuidCheckFps=#ps — Limit files per seconds for SUID check.

C.8. Checking for mount options
Section heading:
[Mounts]
Entries:
MountCheckActive=boolean — "1’ to switch on, '0’ to switch off.

MountChecklInterval=seconds — Interval between checks.

123

Appendix C. List of configuration file options

SeverityMountMissing=severity =~ — Severity for missing mounts.
SeverityOptionMissing=severity = — Severity for missing mount options.
CheckMount=/path [mount options] — Mount point to check. Mount options must be given

as comma-separated list, separated by a blank from the preceding mount point.

C.9. Checking for user files

Section heading:

[UserFiles]

Entries:

UserfilesActive=boolean — "1’ to switch on, '0’ to switch off.

UserfilesNamedfilename policy — Files to check for under each $HOME. Allowed values for

'policy’ are: allignore, attributes, logfiles, loggrow, noignore (default), readonly, user0, userl, user2,
user3, and user4.

UserfilesCheckUids=id list — A list of UIDs where we want to check. The default is all.
Ranges (e.g. 100-500) are allowed. If there is an open range (e.g. 1000-), it must be last in the list.

C.10. Database

Section heading:
[Database]
Entries:

SetDBHost=db_host — Host where the DB server runs (default: localhost). Should be numeric IP
address for PostgreSQL.

SetDBName=b_name — Name of the database (default: samhain).

124

Appendix C. List of configuration file options

SetDBTable=db_table — Name of the database table (default: log).

SetDBUser=db_user — Connect as this user (default: samhain).
SetDBPassworddb_password — Use this password (default: none).
SetDBServerTstamp=oolean — Log server timestamp for client messages (default: true).
UsePersistentboolean — Use a persistent connection (default: true).

AddToDBHash=field — Add a database field to the set of fields that are used for tagging the log
record with an MD5 hash.

C.11. Miscellaneous
Section heading:
[Misc]
Entries:
Daemon=hoolean — Whether to become a daemon (default: no)
MessageHeader1%s \%T \%F \%L \%C" — Specify custom format for message header.

VersionString=string — Set version string to include in file signature database (along with
hostname and date).

SetReverseLookupboolean — If false, skip reverse lookups when connecting to a host known by
name rather than IP address.

HideSetup=boolean — Don’t log names of config/database files on startup.
SyslogFacility2.0G_xxx — Set syslog facility (default is LOG_AUTHPRIV).

MACType=HASH-TIGER/HMAC-TIGER— Set type of message authentication code (HMAC). Must
be identical on client and server.

125

Appendix C. List of configuration file options

SetLoopTime=seconds — Interval between timestamp messages (60).

SetConsoledevice — Set the console device (/dev/console).

MessageQueueActiveboolean — Use SysV IPC message queue (false).

PreludeMapTolnfo=list of samhain severities — The severities that should be mapped to
impact severity 'info’ in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeMapToLow=list of samhain severities — The severities that should be mapped to
impact severity 'low’ in prelude reports (default: none). This option is only available with libprelude
0.9.

PreludeMapToMedium=list of samhain severities — The severities that should be
mapped to impact severity 'medium’ in prelude reports (default: none). This option is only available
with libprelude 0.9.

PreludeMapToHigh=list of samhain severities — The severities that should be mapped
to impact severity 'high’ in prelude reports (default: none). This option is only available with
libprelude 0.9.

PreludeProfile=profile = — Set the profile (sensor name) for use with the Prelude IDS. This option
is only available with libprelude 0.9. Default is 'samhain’ (prelude 0.9) or 'Samhain’ (prelude 0.8).

SetMailTime=seconds — Maximum time interval between mail messages (86400 sec).

SetMailNum=0 -- 127 — Maximum number of pending mails on internal queue (10).

SetMailAddress=recepient — Add a recepient e-mail address (max. 8).

SetMailRelay=P address — The mail relay (for offsite mail; default: none).

MailSubject=string — Custom format for the email subject (none).

SetMailSender=string — Sender for the 'From:’ field.

SetMailFilterAnd=list — Defines a list of strings all of which must match a message, otherwise it
will not be mailed.

126

Appendix C. List of configuration file options

SetMailFilterOr=list — Defines a list of strings at least one of which must match a message,
otherwise it will not be mailed.

SetMailFilterNot=list — Defines a list of strings none of which should match a message,
otherwise it will not be mailed.

SamhainPath=path — The path of the process image.

SetBindAddress3P address — The IP address (i.e. interface on multi-interface box) to use for
outgoing connections (e.g. e-mail).

SetTimeServer¥P address — The time server. Note that the simple 'time’ service (port 37/tcp)
is used.
TrustedUser=username(,username,..) . — List of additional trusted users.

SetlLodfilePath=AUTO or /path — Path to log file (AUTO to tack hostname on compiled-in path).

SetlLockfilePath=AUTO or /path — Path to lock file (AUTO to tack hostname on compiled-in
path).

The following options are only relevant for standalone or client executables:

SetNicelLevel=19..19 — Set scheduling priority during file check. — (see 'man nice’).

SetlOLimit=bps — Set IO limits (kilobytes per second) for file check.

SetFilecheckTimeseconds — Interval between file checks (600).

FileCheckScheduleOneschedule — Crontab-like schedule for file checks.

UseHardlinkCheck=boolean — Compare number of hardlinks to number of subdirectories for
directories.

HardlinkOffset= N:/path — Exception (use multiple times for multiple exceptions). N is offset
(actual - expected hardlinks) fgpath .

AddOKChars=N1, N2, .. — List of acceptable characters (byte value(s)) for the check for weird
filenames. Nn may be hex (leading '0x’: 0XNN), octal (leading zero: ONNN), or decimal. Use "all’
for all.

127

Appendix C. List of configuration file options

IgnoreAdded=path_regex — Ignore if this file/directory is added/created.

IgnoreMissing=path_regex — Ignore if this file/directory is missing/deleted.

ReportOnlyOnce=hoolean — Report only once on a modified file (yes).

ReportFullDetail=boolean — Report in full detail on modified files (no).

UseLocalTime=hoolean — Report file timestamps in local time rather than GMT (no). Do not use
this with Beltane.

ChecksumTestxone/init/update/check — The default action (default is none).

SetPrelinkPath=path — The path to the prelink binary (default/issr/shin/prelink).

SetPrelinkChecksum=hecksum — The checksum of the prelink binary.

SetLogServer#P address — The log server.

SetServerPort=port number — The port on the log server (defaults to the compiled-in port,
which is 49777 unless redefined at compile time).

SetDatabasePathAUTO or /path — Path to database (AUTO to tack hostname on compiled-in
path).

DigestAlgo=SHA1 or MD5— Use SHA1 or MD5 instead of the TIGER checksum (default:
TIGER192).

RedefReadOnly=XXX or -XXX — Add or subtract test XXX from the ReadOnly policy.

RedefAttributes=+XXX or -XXX — Add or subtract test XXX from the Attributes policy.

RedefLogFiles=XXX or -XXX — Add or subtract test XXX from the LogFiles policy.

RedefGrowingLogFiles=XXX or ~XXX — Add or subtract test XXX from the GrowingLogFiles
policy.

RedeflgnoreAll=+XXX or -XXX — Add or subtract test XXX from the IgnoreAll policy.

128

Appendix C. List of configuration file options

RedeflgnoreNone=XXX or -XXX — Add or subtract test XXX from the IgnoreNone policy.

RedefUser0=XXX or -XXX — Add or subtract test XXX from the UserO policy.

RedefUserl=XXX or -XXX — Add or subtract test XXX from the User1 policy.

RedefUser2=xXX or -XXX — Add or subtract test XXX from the User2 policy.

RedefUser3=XXX or -XXX — Add or subtract test XXX from the User3 policy.

RedefUser4d=XxXX or -XXX — Add or subtract test XXX from the User4 policy.

The following options are only relevant for the server:

SetUseSocketboolean — If unset, do not open the command socket (server only). This socket
allows to advise the server to transmit commands to clients as soon as they connect to the server next
time.

SetSocketAllowUid=UID — Which user can connect to the command socket. The default is O (root).

SetSocketPasswordgassword — Password (max. 14 chars, no'@’) for password-based
authentication on the command socket (only if the OS does not support passing credentials via
sockets).

SetChrootDir=path — If set, chroot to this directory (server only).

SetStripDomain=boolean — Whether to strip the domain from the client hosthname when logging
client messages (server only; default: yes).

SetClientFromAccept=hoolean — If true, use client address as known to the communication
layer. Else (default) use client name as claimed by the client, try to verify against the address known
to the communication layer, and accept (with a warning message) even if this fails.

UseClientSeverity-hoolean — If set to 'yes’, don’t assign a special severity (priority) to client
messages.

UseClientClass$oolean — If setto 'yes’, don’t assign a special class to client messages.
SetServerPortport number — The port that the server should use for listening (default is 49777).

129

Appendix C. List of configuration file options

SetServerinterface+P address — The IP address (i.e. interface on multi-interface box) that the
server should use for listening (default is all). Use INADDR_ANY to reset to all.

SeverityLookup=severity = — Severity for name lookup errors when verifying (on the server side)
that the socket peer matches the hostname claimed by the client. See the preceding option.

UseSeparateLogsboolean — If true, messages from different clients will be logged to separate
log files (the name of the client will be appended to the name of the main log file to construct the
logfile name). Default: false.

SetClientTimeLimit=seconds — Time limit until next client message (server-only).
SetUDPActive=hoolean — yule 1.2.8+: Listen on 514/udp (syslog). Default: false.

Remarks: (iyoot and the effective user are always trusted. (ii) If no time server is given, the local
host clock is used. (iii) If the path of the process image is given, the process image will be
checksummed at startup and exit, and both checksums compared.

C.12. External

Definition of an arbitrary number of external programs/scripts (Jegpter ?). Section heading:
[External]

Entries:

OpenCommand=full/path/to/program — Starts new command definition.
SetTypedog/srv — Type/purpose of the program.

SetCommandlinedist — The command line.

SetEnviron=KEY=value — Environment variable (can be repeated).

SetChecksumFIGER checksum — Checksum of the program.

SetCredentialssusername — User whose credentials shall be used.

130

Appendix C. List of configuration file options

SetFilterNot=list — Words not allowed in message.
SetFilterAnd=list — Words required (ALL) in message.
SetFilterOr=list — Words required (at least one) in message.
SetDeadtimeseconds — Deadtime between consecutive calls.

SetDefault=boolean — Set default environment (HOME from /etc/passwd, SHELL=/bin/sh,
PATH=/sbin:/usr/sbin:/bin:/usr/bin).

C.13. Clients

This section is relevant for yule only. Section heading:
[Clients]

Entries must be of the form:
Client=hostname@salt@verifier

SeeSection 6.3 on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the host on which it runs.
Usually, this will be a fully qualified hostname, no numerical address. However, there is no method
that guarantees to yield the fully qualified hostname (it is not even guaranteed that a host has one ...).
The only way to know for sure is to set up the client, and check whether the connection is refused by
the server with a message liknnection attempt from unregistered hosthostname In that case,
hostnames what you should use.

CAVEAT

Problems and oddities encountered in client/server setups (like client
messages from 127.0.0.1, server warnings about unknown/unresolved peer,
etc. are always (at least so far) due to incorrect configuration of the DNS or the
/etc/hosts file.

A surprisingly large number of hosts are not able to determine the own
hostname, or reverse lookup adresses on the own local network. Don’t bother
asking about such problems — fix your DNS.

131

Appendix D. List of database fields

The database may hold (i) internal message from yule, the log server, and (ii) client messages. The
latter result intwo rows: one for the client message, and one for the server message recording the
arrival of the client message, the originating remote host, and the timestamp. The different message
types can be recognized by tlog_ref field (see below).

Many database fields record details of files (s& stat), before (_old) and after (_new) a detected
modification. For some items, both numeric (iXXX) and string values are reported, because the
translation between both is host-specific. This allows to perform updates of the file signature
database(s) on the server side. Other fields are listed below. Basically, most of the fields supply
additional information fotog_msdf relevant.

D.1. General

log_index

Unique index of the message (primary key).

log_ref

Zero for internal server messages, NULL for messages received from a client,
log_index(client_message) for server timestamp of client message.

log_host

The host where the message originates.

log_time

The timestamp of the message.

log_sev

The severity/priority of the message.

log_msg

The message itself.

log_hash

A checksum over the union of user-defineable fields.

entry_status

NEW for new entries. Used by the Beltane frontend to track the status of a message.

path

Path of a file (whenever a message refers to a file).

132

Appendix D. List of database fields

userid

UID of the current user if relevant (e.g. if access to a file fails).
arp
Name of a group (for messages reporting problems with a GID, e.g. no entry in /etc/group).

program

Name of the current process (startup message).

subroutine

Name of an internal subroutine (in messages reporting failure of a subroutine).

status

Exit status value of samhain.

hash

Checksum of configuration file (if gpg not used). Startup message.

path_data, hash_data
Path and checksum of data file (if gpg not used). Startup message.
key uid, key id
User ID and key id of GPG key used to sign the configuration file. Startup message.

key uid_data

User ID of GPG key used to sign the data file (different keys for configuration and data file
cause program abort). Startup failure message.

peer

Address of a connecting host.

obj

Generic field to hold additional information. Occasionally used.

interface

Name of a library routine/interface (error messages).
dir
Name of a directory, if relevant.

linked_path

In reports about dangling symlinks.

port

Port number (in reports about connections errors).

133

Appendix D. List of database fields

service

Logging facility or remote service (failure reports).

D.2. Modules

module

Name of a samhain module (e.g. the module to watch login/logout events). Used in
initialization/error reports for a module.

return_code

Return code from a module. Used in initialization/error reports for a module.

syscall

ID of bad syscall. Kernel checking module.

IP address. Login/logout watch. Also used in received syslog messages (see below).

tty
Terminal used. Login/logout watch.

time

Login/logout time. Also used in some other messages (e.g. time to complete file check).

fromhost

Host from which user is logged in. Login/logout watch.

D.3. Syslog

ip
IP of remote host received syslog reports. Also used in the login/logout watch module (see
above).
facility
Syslog facility for received syslog reports.
priority
Syslog priority for received syslog reports.
syslog_msg

Syslog message for received syslog reports.

134

	Samhain
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Compiling and installing
	2.1. Overview
	2.2. Requirements
	2.3. Download and extract
	2.4. Configuring the source
	2.4.1. Some more configuration options

	2.5. Build
	2.6. Install
	2.6.1. Important make targets

	2.7. Customize
	2.8. Initialize the baseline database
	2.9. Run samhain
	2.10. Files and directory layout
	2.10.1. Trusted users and trusted paths
	2.10.2. Directory layout
	2.10.3. Runtime files
	2.10.3.1. Standalone or client
	2.10.3.2. Server

	2.10.4. Installed files
	2.10.4.1. Standalone or client
	2.10.4.2. Server

	2.11. The testsuite

	Chapter 3. General usage notes
	3.1. How to invoke
	3.2. Using daemontool (or similar utilities)
	3.3. Controlling the daemon
	3.4. Signals
	3.5. PID file
	3.6. Log file rotation
	3.7. Updating the file signature database
	3.8. Improving the signaltonoise ratio
	3.9. Runtime options: commandline configuration file
	3.10. Support / Bugs / Problems

	Chapter 4. Configuration of logging facilities
	4.1. General
	4.1.1. Severity levels
	4.1.2. Classes

	4.2. Available logging facilities
	4.3. Activating logging facilities and filtering messages
	4.4. Email
	4.4.1. Email reports and their integrity

	4.5. Log file
	4.5.1. The log file and its integrity

	4.6. Log server
	4.6.1. Details

	4.7. External facilities
	4.8. Console
	4.9. Prelude
	4.9.1. Preludespecific commandline options
	4.9.2. Registering to a Prelude 0.9 manager
	4.9.3. Registering to a Prelude 0.8 manager

	4.10. Using samhain with nagios
	4.11. Syslog
	4.12. SQL Database
	4.12.1. MySQL configuration details

	Chapter 5. Configuration samhain, the file monitor
	5.1. Usage overview
	5.2. Available checksum functions
	5.3. File signatures
	5.4. Defining which files/directories to monitor
	5.4.1. Monitoring policies
	5.4.2. File/directory specification
	5.4.2.1. Rules

	5.4.3. Suppress messages about new/deleted files
	5.4.4. Dynamic database update (modified/disappeared/new files)
	5.4.5. Recursion depth(s)
	5.4.6. Hardlink check
	5.4.6.1. Specify exceptions for the hardlink check

	5.4.7. Check for weird filenames
	5.4.8. Support for prelink
	5.4.9. Codes in messages about reported files

	5.5. Excluding files and/or subdirectories (All except)
	5.6. Timing file checks
	5.6.1. Using a second schedule

	5.7. Initializing, updating, or checking
	5.8. The file signature database
	5.9. Checking the file system for SUID/SGID binaries
	5.9.1. Quarantine SUID/SGID files
	5.9.2. Configuration

	5.10. Detecting Kernel rootkits
	5.10.1. Configuration
	5.10.2. What is a kernel rootkit ?
	5.10.3. Implemented integrity checks
	5.10.4. Error messages

	5.11. Monitoring login/logout events
	5.12. Checking mounted filesystem policies
	5.13. Checking sensitive files owned by users
	5.14. Modules
	5.15. Performance tuning

	Chapter 6. yule, the log server
	6.1. General
	6.2. Important installation notes
	6.3. Registering a client
	6.4. Enabling logging to the server
	6.5. Enabling baseline database / configuration file download from the server
	6.5.1. Configuration file
	6.5.2. Database file

	6.6. Rules for logging of client messages
	6.7. Detecting 'dead' clients
	6.8. The HTML server status page
	6.9. Chroot
	6.10. Restrict access with libwrap (tcp wrappers)
	6.11. Sending commands to clients
	6.11.1. Communicating with the server
	6.11.2. Authenticating to the server

	6.12. Syslog logging
	6.13. Servertoserver relay
	6.14. Performance tuning

	Chapter 7. Hooks for External Programs
	7.1. Pipes
	7.2. System V message queue
	7.3. Calling external programs
	7.3.1. Example setup for paging

	Chapter 8. Additional Features Signed Configuration/Database Files
	8.1. The samhainadmin script

	Chapter 9. Additional Features Stealth
	9.1. Hiding the executable
	9.1.1. Using kernel modules to hide samhain (Linux/ix86 only)

	9.2. Packing the executable

	Chapter 10. Deployment to remote hosts
	10.1. Method A: The deployment system
	10.1.1. Requirements
	10.1.2. Layout of the deployment system
	10.1.2.1. The configs subdirectory
	10.1.2.2. The archpkg subdirectory

	10.1.3. Customizing the system
	10.1.3.1. Setting default options
	10.1.3.2. Adding support for an architecture
	10.1.3.3. Perarchitecture pre/postinstallation scripts
	10.1.3.4. Perhost runtime configuration

	10.1.4. Using the deploy.sh script
	10.1.4.1. General options

	10.1.5. deploy.sh info
	10.1.5.1. Specific options

	10.1.6. deploy.sh clean
	10.1.6.1. Specific options

	10.1.7. deploy.sh download
	10.1.7.1. Specific options

	10.1.8. deploy.sh checksrc
	10.1.8.1. Specific options

	10.1.9. deploy.sh build
	10.1.9.1. Specific options

	10.1.10. deploy.sh install
	10.1.10.1. Specific options

	10.1.11. deploy.sh uninstall
	10.1.11.1. Specific options

	10.1.12. Usage notes

	10.2. Method B: The native package manager
	10.2.1. Building an RPM
	10.2.1.1. Custom RPM
	10.2.1.2. Singlehost

	10.2.2. Building an HPUX package
	10.2.3. Building a Solaris package
	10.2.4. Building a Gentoo Linux package
	10.2.5. Building a Debian package

	Chapter 11. Security Design
	11.1. Usage
	11.2. Integrity of the executable
	11.3. Client executable integrity
	11.4. The server
	11.5. General

	Appendix A. List of options for the ./configure script
	A.1. General
	A.2. Optional modules to perfor additional checks
	A.3. OpenPGP Signatures on Configuration/Database Files
	A.4. Client/Server Connectivity
	A.5. Paths

	Appendix B. List of command line options
	B.1. General
	B.2. samhain
	B.3. yule

	Appendix C. List of configuration file options
	C.1. General
	C.1.1. Conditionals

	C.2. Files to check
	C.3. Severity of events
	C.4. Logging thresholds
	C.5. Watching login/logout events
	C.6. Checking for kernel module rootkits
	C.7. Checking for SUID/SGID files
	C.8. Checking for mount options
	C.9. Checking for user files
	C.10. Database
	C.11. Miscellaneous
	C.12. External
	C.13. Clients

	Appendix D. List of database fields
	D.1. General
	D.2. Modules
	D.3. Syslog

